1) Noor iteration sequence
Noor迭代序列
1.
In arbitrary Banach spaces,it is shown that the convergence of Mann iteration is equivalent to Noor iteration sequence,and the convergence of Mann iteration is equivalent to Ishikawa iteration sequence for generalized-contractive mappings.
对任意实Banach空间中的广义Φ-压缩映射分别证明了Mann迭代序列与Noor迭代序列收敛的等价性以及Mann迭代序列与Ishikawa迭代序列收敛的等价性,所得的结果是2005年S。
3) Noor iterative process
Noor迭代过程
1.
Let {αn}n≥0, {βn }n≥0, and {γn}n≥0 be real sequences in [0,1] satisfying the following conditions :Then, for arbitrary initial value x0∈K, the Noor iterative process {xn}n≥0generated by (N)converges strongly to theunique fixed point of T.
{α_n}n≥0,{β_n}n≥0,{γ_n}n≥0是[0,1]中的实数列满足如下条件: ①α_n→0,β_n→0,γ_n→0(n→∞) ②sum from n=0 α_n(1-α_n)=∞ 则对任意的x_0∈K,由Noor迭代过程 z_n=(1-γ_n)x_n+γ_nTx_n,y_n=(1-β_n)x_n+β_nTz,x_(n+1)=(1-α_n)x_n+α_nTy_n,n≥0所产生的序列{x_n}n≥0,强收敛于T的唯一不动点。
4) modified Noor iterations
修正Noor迭代
5) iterative sequence
迭代序列
1.
Strong convergence of Reich-Takahashi iterative sequence for asymptotically pseudo-contractive mapping;
渐近伪压缩映像的Reich-Takahashi迭代序列的强收敛性
2.
Strong convergence of some iterative sequences for asymptotically nonexpansive mappings in Banach spances;
Banach空间中渐近非扩张映象迭代序列的强收敛性
3.
Aim\ The convergence of Mann iterative sequences of real functions defined on unbounded convex domain is discussed.
目的 讨论无界闭凸区域上的实函数的 Mann迭代序列的收敛性 。
6) iteration sequence
迭代序列
1.
For a lot of nonlinear mappings,the fixed points can be approximated by iteration sequence {xn}.
设E是Hilbert空间,T是E中具非空不动点集F(T)的非线性映象,许多非线性映像的多种形式的迭代序列{xn}可逼近映像T的不动点p0∈F(T)。
2.
Convergence of Ishikawa iteration sequence for setvalued nonexpansive mapping are discussed in uniformly covex Banach space, and the conditions are shown which guarantee the convergence of the iteration sequence to a fixed point.
讨论了集值非扩张映象在一致凸Banach空间中Ishikawa迭代序列的收敛性及确保迭代程序收敛到不动点的条件,所得结果是曾六川等的推广和发展。
3.
This article will set up an iteration sequence and extent its results to a more comprehensive mapping-semi-compact 1-set mapping.
本文建立了一迭代序列,将其结果推广到更广泛的一类映射———半紧1-集映射,并削弱了紧性和全连续的条件,得到了乘积空间中的极小、极大耦合不动点定理。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条