说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 映射环
1)  map ring
映射环
1.
In this paper,we investigate the conditions that a ring is Armendariz ring,show that quotient rings,Morita Context rings with a pair of zero homomorphisms and map rings are Armendariz ring under some conditions by using of general mathods in ring theory,and generalize some results in literatures.
使用环论的一般方法,证明了在一定条件下商环、具有一对零同态的Morita Context环以及映射环是Armendariz环,推广了已有的某些结果。
2)  Ring-projection
环映射
3)  Mapping Near-ring
映射Near环
4)  loop mapping
循环映射
5)  environment mapping
环境映射
1.
Aim To introduce the basic concepts of environment mapping in D3D,and detailedly discuss the process of using D3D to realize cubic and spherical environment mapping.
目的介绍D3D中环境映射的基本概念,详细论述用D3D实现立方体环境映射和球面环境映射的过程。
6)  one-one mapping ring
一一映射环
1.
For the mapping algorithm it is points out that there is a"one-one mapping ring";and for the reduetive algorithm it researches two different algorithm to fit various instance.
对于映射算法,指出非均匀映射变换的距离轴离散化与角度轴离散化具有统一的"一一映射环";对于还原算法,提出了基于子像素的最优像素构造算法和简单反向算法两种不同的算法,以适应不同环境下的要求。
补充资料:Poincaré回归映射


Poincaré回归映射
Poincare retuni map

关于所有半轨都与V相交的情况可见【A81. 上面提到的“琴真’担字回(‘cyl访drical’口姚esp解e)定义如下.考虑与(·)相关联的自治系统 又二.j(y,x),少二1.(Al)把f的定义域中每一点(y,x)均与(y+T,x)视为相同,注意到后者形如Rx刀的一点,这里D是R”的一个子集(当(*)定义于R”上时).这时(AI)定义“柱”I:xD上的一动力系统,I:是闭区间10,:j并视其两个端点为同一点,即为一圆.上面考虑的映射T:x卜,沪(:,x)就是I,xD上的动力系统(AI)到超曲面{0}xD中的Poinc沉映射. 关于整体截面的存在性,例如可见【A21 W.2节,以及【A3].在更一般的变换群的框架中可以讨论“擎侠匆泞’(蜘回slices),例如见【A,l·至于不可微动力系统局部截面的存在性,可见fA4」Vl.2节.在叶状结构理论中可以找到Poinca记回归映射在(叶的)和乐群之生成元中的推广.例如可见【A6) 关于Poinc乏晚回归映射在微分方程理论中的应用(周期轨道附近的性态),例如可见【AS](所谓“Fk现uet理论”(RO明ett】切ry)).Poi附悦回归映射fpo泳习戊r比川llnap;【.oe月e加。翎,,o、。丘p撇n“e」后继映射(suce巴sor服pp雌) 一个光滑的或至少是连续的流(连续时间动力系统(flow(cont访uous tilned”lanllc:115”tem))S={S,}和一个横截于它的超曲面V的,即是一个将点u〔V映到始于。的流之正半轨道一首次再度与F相交之点的映射T(它只对于那些有再度相交点存在的v点有定义).(超曲面V称为截面(sectlon),相交面(in-tersectillg sul毛‘e)或横截面(tmnsversal)).若dimV二l(从而{S。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条