1) two-step estination
两步估计法
2) two stage estimator
两步估计
1.
The focus of this paper is to discuss the statistical properties of several two stage estimators of the regression coefficients (β) in seemingly unrelated regression system with unequal numbers of observations(SURS(UNO)) when the covariance matrix unknown.
该文着重讨论协方差阵未知时观察次数不等的半相依回归系统(SURS(UNO))中回归系数β的两步估计问题,对3个因素的48种不同水平组合进行MonteCarlo模拟,并对模拟结果进行统计检验,发现在我们给出的sd准则下:1。
3) two-stage estimator
两步估计
1.
Firstly, we give the expression of root root estimator and proved under some condition root root estimator is more efficient than the Covariance Adjusted Approach, and the properties are also discussed for the two-stage estimator.
首先对SUR系统给出了根方估计的表达式,并在一定的条件下,我们证明了根方估计优于协方差改进估计,其相应的两步估计优于两步协方差改进估计,同时讨论了根方估计相对于最小二乘估计以及协方差改进估计的效率,并给出效率的上界与下界。
2.
The condition under which this improved estimator is equivalent to the classic two-stage estimator and the optimal property on the term of mean square error are also obtained.
对于两个半相依回归系统的未知回归系数,本文首先借鉴文献中给出的两步协方差改进估计的方法给出两种两步协方差改进估计序列,并给出其与两步估计等价的条件和均方误差意义下的优良性;其次,我们对文献中给出的一种两步估计作简单改进,使得改进后的估计在更大的参数空间内优于最小二乘估计。
4) two-stage estimate
两步估计
1.
Also discuss the qualities about the estimate and its two-stage estimate.
对于一类半相依回归系统,将Stein压缩思想与广义岭型主成分改进估计相结合,提出Stein型广义岭型主成分改进估计,并且讨论这种估计及其相应的两步估计的优良性质。
2.
Firstly,a simple computing method is given for the two-stage estimate of regression coefficient matrix in the Growth Curve Model with Random Effects.
首先给出了含随机效应增长曲线模型中回归参数阵两步估计的一个较为简单的计算方法;然后给出了回归参数阵的可估函数的两步估计具有无偏性的一个基本结论,并证明了两种常见两步估计均具有无偏性;最后给出了一个牙齿生长数据的实例模拟。
3.
Chapter 3 is devoted to discuss the two-stage estimate of KθL,which mainly included two s.
第三章讨论了可估函数K(?)L的两步估计问题,主要包含两个方面:一方面是两步估计的计算问题,二是两步估计的优良性。
5) two-step Stein estimate
两步Stein估计
1.
Taking two-step Stein estimate and Pitman criterion for instance,the purpose of this text is to explain two-step estimates rationality under other criteria from the angle of protecting.
我们以两步Stein估计为例,给出了它在Pitman准则下仍具有优良性的结果。
6) two-step optimal estimation
两步最优估计
补充资料:三步两脚
1.快速行走貌。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条