说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 振动优化模型
1)  vibration optimization model
振动优化模型
1.
The study on the vibration optimization model of the wearable computer motherboard
可穿戴计算机主板振动优化模型研究
2)  Eigenvector optimization
振型优化
3)  vibration optimization
振动优化
4)  dynamic optimization model
动态优化模型
5)  vibration model
振动模型
1.
Study on dynamic vibration models of disc opener of the planter;
圆盘开沟器动力学振动模型的研究
2.
Research on Nonlinear Vibration Model and Simulation of Fluid-conveying Pipes;
输流管道非线性振动模型及仿真研究
3.
Discussion on the structural vibration model and rigid matrix of elastic-plastic time history analysis
弹塑性时程分析中结构的振动模型及刚度矩阵
6)  optimization model
优化模型
1.
A portfolio optimization model for petroleum exploration projects with consideration of geological risk;
考虑地质风险的勘探项目投资组合优化模型
2.
Establishment of optimization model for location of municipal solid waste transfer station and its application;
城市垃圾中转站选址优化模型的建立及其应用
3.
Arithmetic and optimization model of arc substitute non-circular cure in system of HS-WEDM;
线切割系统中用圆弧代替非圆曲线的优化模型
补充资料:振型


振型
Mode of vibration

  振型(mode of vibration) 振型是指振动的特征方式。在自由振动系统中,振动是在特定的频率以某些特征型式进行的。振动的这些特征型式称为主振型。 举例说,理想弦能整体地按下式所定义的特征频率而振动: f~(1/ZL卜可俪不,其中乙是弦在两刚性支点间的长度,T是张力,水是弦单位长度的质量。弦上不同部分的位移由一个特征形状函数来决定。更具体地说,弦的每个部分的运动是和,in!竿卜i。〔2动)成比例,其中二是弦上棍明‘.l”一~、L)一~、一”““~卜甘v劝’~’--一J“一这个部分到一个固定端的距离,‘是时间。这种最简单的振动型式是弦的第一振型,即基本振型,它的频率则是基本频率。弦上所有各部分都以同样频率而振动,在同一瞬时由平衡位置偏离或返回。 弦也可以分两段振动,当一段由平衡位置朝正向偏离时,另一段朝反向偏离,或反过来运动。此时,弦上每个部分的运动仍可以由一个空间函数与时间正弦函数的乘积sin里竺 Lsin(4二ft)来描述。弦上所有各部分都一齐按时间的正弦函数以同一频率运动,而空间函数则决定两个按相反方向进行的运动。第二振型的频率是第一振型频率的两倍。类似地,更高阶振型具有的频率都是基本频率的整数倍。 由于诸频率是按1,2,3..·的比例,所以理想弦的诸振型都可以合适地称为谐振。但并非所有振动物体都具有谐振型。举例说,自由振动的理想鼓面的诸频率具有比值1,1. 59,2.14,2.30.二。事实上,大多数自由振动的实际系统都具有频率间不严格地按整数比的各个振型。参阅“振动”(vibration)条。 〔杨(R .w.Young)撰〕
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条