1) variation of disease resistance
抗病性变异
2) Resistant variants
抗病变异体
1.
The study of γ irradiation induced mutation(60 Co) and directional screen of resistant variants in medium were made with embryogenic callus obtained from stem culture of "Jiayin" tissue culture seedlings of Populus×euramericana as irradiation induced mutation material.
以欧美杨"加引"组培苗茎段培养获得的胚性愈伤组织为辐射诱变材料,进行了γ射线(60Co)辐射诱变、培养基上定向筛选抗病变异体的研究。
3) resistance variation
抗性变异
1.
There are several kinds of variations such as chromosome variation, morphological and agricultural trait variation and resistance variation.
原生质体再生植株发生变异的现象较为普遍 ,已涉及到很多作物 ,变异的类型较多 ,主要有染色体变异、形态和农艺性状变性、抗性变异等 ,产生变异的机理主要有遗传和生理两方面 ,此类变异有其优点和不足 ,但无庸置疑的是原生质体再生植株遗传变异为植物育种提供了大量可供选择和利用的材料。
4) the ability of anti variation
变异抗性
5) Resistant specificity
抗病特异性
补充资料:染色体变异
指染色体结构和数量的变异。
结构变异 因染色体发生断裂而引起。染色体一般不易发生断裂,但当受到某些物理、化学因素的作用和远缘杂交的影响,断裂频率可显著提高。染色体断裂所产生的断片如仍在原来的断裂处重接,则不会出现变异,否则就可能出现 4种结构变异图。①缺失。指染色体断裂的断片发生丢失。缺失的断片如系染色体臂的外端区段,则称顶端缺失;如系染色体臂的中间区段,则称中间缺失。缺失的纯合体可能引起致死或表型异常。在杂合体中如携有显性等位基因的染色体区段缺失,则隐性等位基因得以实现其表型效应,出现所谓假显性。缺失可用以进行基因定位。②重复。指某染色体的个别区段重复出现 1次或多次。重复使染色体重复区段内的基因数成倍增加。某基因由于数量的增加而发生表型效应的差异,称为基因的剂量效应。果蝇的棒眼就是 X染色体特定区段重复的结果。重复对生物体的不利影响一般小于缺失,因此在自然群体中较易保存。③倒位。指某染色体的内部区段发生180°的倒转,而使该区段的原来基因顺序发生颠倒的现象。倒位区段只涉及染色体的一个臂,称为臂内倒位;涉及包括着丝粒在内的两个臂,称为臂间倒位。倒位的遗传效应首先是改变了倒位区段内外基因的连锁关系,还可使基因的正常表达因位置改变而有所变化。倒位杂合体联会时可形成特征性的倒位环,引起部分不育性,并降低连锁基因的重组率。④易位。一条染色体与非同源的另一条染色体彼此交换部分区段,称为易位或相互易位。相互易位在植物中广泛存在。易位杂合体在减数分裂偶线期和粗线期,可出现典型的十字形构型,终变期或中期 I时则发展为环形、链形或∞字形的构型。易位的直接后果是使原有的连锁群改变。易位杂合体所产生的部分配子含有重复或缺失的染色体,从而导致部分不育或半不育。
数量变异 包括整倍性变异和非整倍性变异。
整倍性变异 指以一定染色体数为一套的染色体组呈整倍增减的变异。一倍体只有1个染色体组,一般以X表示。二倍体具有 2个染色体组。具有3个或3个以上染色体组者统称多倍体,如三倍体、四倍体、五倍体、六倍体等。一般奇数多倍体由于减数分裂不正常而导致严重不孕。如果增加的染色体组来自同一物种,则称同源多倍体。如直接使某二倍体物种的染色体数加倍,所产生的四倍体就是同源四倍体。如使不同种、属间杂种的染色体数加倍,则所形成的多倍体称为异源多倍体。异源多倍体系列在植物中相当普遍,据统计约有30~35%的被子植物存在多倍体系列,而禾本科植物中的异源多倍体则高达75%。栽培植物中有许多是天然的异源多倍体,如普通小麦为异源六倍体、陆地棉和普通烟草为异源四倍体。多倍体亦可人工诱发,秋水仙碱处理就是诱发多倍体的最有效措施(见倍数性育种)。
高等植物的单倍体是指具有配子染色体数(以 n表示)的生物体。二倍体、四倍体和六倍体物种的单倍体分别为一倍体、二倍体和三倍体。单倍体除可通过无融合生殖而自发产生外,亦可通过远缘杂交、辐射或化学处理、外来细胞质影响以及花药或花粉培养等途径人工诱发。单倍体如经染色体数的自然或人工加倍,即可产生纯合的二倍体或多倍体。
非整倍性变异 生物体的2n染色体数增或减一个以至几个染色体或染色体臂的现象。出现这种现象的生物体称非整倍体。其中涉及完整染色体的非整倍体称初级非整倍体;涉及染色体臂的非整倍体称次级非整倍体。
在初级非整倍体中,丢失1对同源染色体的生物体,称为缺体(2n-2);丢失同源染色体对中1条染色体的生物体称为单体(2n-1);增加同源染色体对中1条染色体的生物体称为三体(2n+1);增加1对同源染色体的生物体称为四体(2n+2)。
在次级非整倍体中,丢失了1个臂的染色体称为端体。某生物体如果有 1对同源染色体均系端体者称为双端体,如果1对同源染色体中只有1条为端体者称为单端体。某染色体丢失了1个臂,另1个臂复制为2个同源臂的染色体,称为等臂染色体。具有该等臂染色体的生物体,称为等臂体。等臂体亦有单等臂体与双等臂体之分。
由于任何物种的体细胞均有n对染色体,因此各物种都可能有n个不同的缺体、单体、三体和四体,以及2n个不同的端体和等臂体。例如普通小麦的n=21,因此它的缺体、单体、三体和四体各有21种,而端体和等臂体则可能有42种。
染色体数的非整倍性变异可引起生物体的遗传不平衡和减数分裂异常,从而造成活力与育性的下降。但生物体对染色体增加的忍受能力一般要大于对染色体丢失的忍受能力。因 1条染色体的增减所造成的不良影响一般也小于1条以上染色体的增减。
非整倍性系列对进行基因的染色体定位、确定亲缘染色体组各成员间的部分同源关系等,均具有理论意义。此外,利用非整倍体系列向栽培植物导入有益的外源染色体和基因亦有重要的应用价值。如小麦品种小偃 759就是普通小麦增加了 1对长穗偃麦草染色体的异附加系,?剂P÷笤蛭胀ㄐ÷笕旧?4D被长穗偃麦草染色体4E所代换的异代换系。
参考书目
C.P.Swanson,T.Merz,and W.J.Young,Cytogenetics, The Chromosome in Division Inheritance and Evolution,Prentic Hall, London, 1981.
结构变异 因染色体发生断裂而引起。染色体一般不易发生断裂,但当受到某些物理、化学因素的作用和远缘杂交的影响,断裂频率可显著提高。染色体断裂所产生的断片如仍在原来的断裂处重接,则不会出现变异,否则就可能出现 4种结构变异图。①缺失。指染色体断裂的断片发生丢失。缺失的断片如系染色体臂的外端区段,则称顶端缺失;如系染色体臂的中间区段,则称中间缺失。缺失的纯合体可能引起致死或表型异常。在杂合体中如携有显性等位基因的染色体区段缺失,则隐性等位基因得以实现其表型效应,出现所谓假显性。缺失可用以进行基因定位。②重复。指某染色体的个别区段重复出现 1次或多次。重复使染色体重复区段内的基因数成倍增加。某基因由于数量的增加而发生表型效应的差异,称为基因的剂量效应。果蝇的棒眼就是 X染色体特定区段重复的结果。重复对生物体的不利影响一般小于缺失,因此在自然群体中较易保存。③倒位。指某染色体的内部区段发生180°的倒转,而使该区段的原来基因顺序发生颠倒的现象。倒位区段只涉及染色体的一个臂,称为臂内倒位;涉及包括着丝粒在内的两个臂,称为臂间倒位。倒位的遗传效应首先是改变了倒位区段内外基因的连锁关系,还可使基因的正常表达因位置改变而有所变化。倒位杂合体联会时可形成特征性的倒位环,引起部分不育性,并降低连锁基因的重组率。④易位。一条染色体与非同源的另一条染色体彼此交换部分区段,称为易位或相互易位。相互易位在植物中广泛存在。易位杂合体在减数分裂偶线期和粗线期,可出现典型的十字形构型,终变期或中期 I时则发展为环形、链形或∞字形的构型。易位的直接后果是使原有的连锁群改变。易位杂合体所产生的部分配子含有重复或缺失的染色体,从而导致部分不育或半不育。
数量变异 包括整倍性变异和非整倍性变异。
整倍性变异 指以一定染色体数为一套的染色体组呈整倍增减的变异。一倍体只有1个染色体组,一般以X表示。二倍体具有 2个染色体组。具有3个或3个以上染色体组者统称多倍体,如三倍体、四倍体、五倍体、六倍体等。一般奇数多倍体由于减数分裂不正常而导致严重不孕。如果增加的染色体组来自同一物种,则称同源多倍体。如直接使某二倍体物种的染色体数加倍,所产生的四倍体就是同源四倍体。如使不同种、属间杂种的染色体数加倍,则所形成的多倍体称为异源多倍体。异源多倍体系列在植物中相当普遍,据统计约有30~35%的被子植物存在多倍体系列,而禾本科植物中的异源多倍体则高达75%。栽培植物中有许多是天然的异源多倍体,如普通小麦为异源六倍体、陆地棉和普通烟草为异源四倍体。多倍体亦可人工诱发,秋水仙碱处理就是诱发多倍体的最有效措施(见倍数性育种)。
高等植物的单倍体是指具有配子染色体数(以 n表示)的生物体。二倍体、四倍体和六倍体物种的单倍体分别为一倍体、二倍体和三倍体。单倍体除可通过无融合生殖而自发产生外,亦可通过远缘杂交、辐射或化学处理、外来细胞质影响以及花药或花粉培养等途径人工诱发。单倍体如经染色体数的自然或人工加倍,即可产生纯合的二倍体或多倍体。
非整倍性变异 生物体的2n染色体数增或减一个以至几个染色体或染色体臂的现象。出现这种现象的生物体称非整倍体。其中涉及完整染色体的非整倍体称初级非整倍体;涉及染色体臂的非整倍体称次级非整倍体。
在初级非整倍体中,丢失1对同源染色体的生物体,称为缺体(2n-2);丢失同源染色体对中1条染色体的生物体称为单体(2n-1);增加同源染色体对中1条染色体的生物体称为三体(2n+1);增加1对同源染色体的生物体称为四体(2n+2)。
在次级非整倍体中,丢失了1个臂的染色体称为端体。某生物体如果有 1对同源染色体均系端体者称为双端体,如果1对同源染色体中只有1条为端体者称为单端体。某染色体丢失了1个臂,另1个臂复制为2个同源臂的染色体,称为等臂染色体。具有该等臂染色体的生物体,称为等臂体。等臂体亦有单等臂体与双等臂体之分。
由于任何物种的体细胞均有n对染色体,因此各物种都可能有n个不同的缺体、单体、三体和四体,以及2n个不同的端体和等臂体。例如普通小麦的n=21,因此它的缺体、单体、三体和四体各有21种,而端体和等臂体则可能有42种。
染色体数的非整倍性变异可引起生物体的遗传不平衡和减数分裂异常,从而造成活力与育性的下降。但生物体对染色体增加的忍受能力一般要大于对染色体丢失的忍受能力。因 1条染色体的增减所造成的不良影响一般也小于1条以上染色体的增减。
非整倍性系列对进行基因的染色体定位、确定亲缘染色体组各成员间的部分同源关系等,均具有理论意义。此外,利用非整倍体系列向栽培植物导入有益的外源染色体和基因亦有重要的应用价值。如小麦品种小偃 759就是普通小麦增加了 1对长穗偃麦草染色体的异附加系,?剂P÷笤蛭胀ㄐ÷笕旧?4D被长穗偃麦草染色体4E所代换的异代换系。
参考书目
C.P.Swanson,T.Merz,and W.J.Young,Cytogenetics, The Chromosome in Division Inheritance and Evolution,Prentic Hall, London, 1981.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条