1) edge-color matrix
边色矩阵
2) The matrix of edge colouring
边着色矩阵
3) strong edge colourings
强边着色矩阵
1.
If a graph G has a proper edge colourings such that the incident edge colourings sets between any two vertices in the graph G are different from each other,then such an edge colourings is said to be a strong edge colourings of graph G.
本文利用强边着色矩阵,讨论了完全图的强边着色及其分类,证明了:当n是奇数时,图Kn是一个第二类强边着色图,且χs′(Kn)=Δ(Kn)+1;当n是偶数时,图Kn是一个第三类强边着色图,且χs′(Kn)=Δ(Kn)+2。
4) quasi-strong edge colourings matrix
准强边着色矩阵
1.
This paper uses the quasi-strong edge colourings matrix to discuss the computation of quasi-strong edge colourings graphs for the complete graphs.
使用准强边着色矩阵讨论了完全图的准强边着色图的计数。
5) edge matrix
边矩阵
1.
The definitons about edge matrix and round-robin tournament are given.
给出了边矩阵和循环赛图的定义。
2.
The definitions about edge matrix edge matrix s Δ(G)-edge colouring and Δ(G)/2-cycles colouring are given.
给出了边矩阵及边矩阵的Δ(G)-边着色和Δ(G)/2-圈着色的定义。
3.
The definitions about edge matrix and round-robin tournament are given.
给出了边矩阵和循环赛图的定义,提出了基于n(n-1)/2个完全二分图矩阵的△(G′)-边着色求解完全图K4n的完备匹配Mi的算法。
6) bordered matrix
加边矩阵
1.
In this article we study the relations among D1, D2, D3, D4, which are in the reflexive g-inverse matrixM-r=D1D2D3D4of the bordered matrixM=ABC0.
该文研究加边矩阵M =ABC 0的自反广义逆M-r =D1D2D3 D4中的子矩阵D1,D2 ,D3 和D4的关系 ,还研究了矩阵 A-r C-rB-r 0 和M-r 之间的关系。
2.
In this article we study the singularity of the bordered matrix M=ABC0 and give the structure of its reflxive g-inverses M-r=D1D2D3D40 by applying the multiple quotient singular value decomposition QQ-SVD.
作者运用多个矩阵的商型奇异值分解QQ -SVD ,研究加边矩阵M =ABC 0的奇异性 ,并给出它的自反广义逆M-r =D1 D2D3 D4的结构。
补充资料:边色
1.边地的风物景色。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条