1) Jacobi basis
Jacobi基
1.
For solving least squares approximation problem simply and effectively on triangular domains in CAGD,this paper derives the matrices of transformation of the bivariate Bernstein basis form into the Jacobi basis of the same degree and vice versa.
为了在CAGD中有效地求解三角域上Bézier曲面的最小平方逼近问题,给出了三角域上双变量Jacobi基和Bernstein基的相互转换矩阵。
2) triangular Jacobi polynomial
三角Jacobi基
3) Jacobian
[dʒæ'kəubiən]
Jacobi
1.
Some Jacobians of the Transformation between Random Vectors and Matrices;
Jacobi行列式的计算
2.
This involves computing the Jacobians of these transformations.
随机矩阵之间变换的Jacobi行列式的计算,常规方法就是求出变换的行列式的元素再求行列式值,这一方法能计算许多变换的Jacobi,但其计算量非常大,有时甚至无法算出结果。
4) JACOBI method
JACOBI法
1.
Then it can get a kind of model that has concentration weight and calculates the frequency with JACOBI method.
在进行动力特性分析时,采用动力凝聚方法把角位移自由度缩减掉以便从总刚中求侧移刚度矩阵,从而把原来的体系转化为带有集中质量的杆件模型,然后再将侧移刚度矩阵转化成正定矩阵,利用广义JACOBI法求出频率和振型。
5) Jacobi weight
Jacobi权
1.
Weighted L_p~ω approximation by modified Bernstein-Durrmeyer operator with Jacobi weight;
带Jacobi权修正的Bernstein-Durrmeyer算子在权L_p~ω中的逼近
2.
Using the relation between the weighted modulus of smoothness and the weighted main-part modulus of smoothness,we discuss the pointwise direct and equivalent approximation theorem with Jacobi weight for Beta operator.
引入一种改变的带权K-泛函,利用带权光滑模和带权主部光滑模的关系及带权光滑模与改变的带权K-泛函的等价性,讨论了Beta算子的点态带Jacobi权逼近正定理及等价定理。
3.
Using the moduli of smoothnessω_φ~Tλ(f,t)_ω,direct and inverse approximation theorems with Jacobi weight for combinations of Baskakov operators is established in the paper, and the relation between higher derivatives of the operators and the smoothness of functions to be approximated is obtained in the paper.
利用加权光滑模ω_φ~Tλ(f,t)_ω给出了Baskakov算子的线性组合加Jacobi权逼近的正逆定理;另外,研究了加Jacobi权下Baskakov算子的高阶导数与所逼近函数光滑性之间的关系。
6) Jacobi sum
Jacobi和
1.
Some methods and skills in the implementation of the Jacobi sum primality testing;
Jacobi和素性检验实现中的某些方法和技巧
补充资料:[styrene-(2-vinylpyridine)copolymer]
分子式:
分子量:
CAS号:
性质:学名苯乙烯-2-乙烯吡啶共聚物。微黄色粉末或透明小颗粒晶体。无臭,无味。不溶于水,溶于酸、乙醇、丙酮、氯仿。有抗水、防潮性能,适用于多种药片的包衣等。
分子量:
CAS号:
性质:学名苯乙烯-2-乙烯吡啶共聚物。微黄色粉末或透明小颗粒晶体。无臭,无味。不溶于水,溶于酸、乙醇、丙酮、氯仿。有抗水、防潮性能,适用于多种药片的包衣等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条