1) hierarchical Particle Swarm Optimization(PSO)
分层粒子群优化
1.
A hierarchical Particle Swarm Optimization(PSO) algorithm is proposed in order to overcome the weak ability of local search and slowly converging speed of PSO algorithm in later period.
针对粒子群优化算法存在进化后期局部搜索能力不强、收敛速度变慢的问题,提出一种分层粒子群优化算法。
2) grouping particle swarm optimization
分组粒子群优化
3) particle swarm optimization(PSO)
粒子群优化
1.
With the introduction of punishment function and the appropriate modification of objective function,a sintering blending optimization algorithm is proposed,which takes full advantage of the global search ability of particle swarm optimization(PSO) algorithm and the local search ability of conjugate gradient algorithm with constraints.
在引入惩罚函数和对目标函数进行适当修改的前提下,充分利用粒子群优化算法的全局搜索能力和约束条件下共轭梯度法的局部搜索能力,设计了烧结配料优化算法。
2.
In order to solve the problems of low-precision and slow control of the traditional algorithms in the pattern recognition and control of flatness,the neural network trained by hybrid algorithms of particle swarm optimization(PSO) and back propagation(BP)is introduced.
为了解决传统的板形识别与控制中的识别精度低,控制速度慢等问题,将粒子群优化(particle swarm optimization,PSO)算法和误差反传递(back propagation,BP)算法混合训练的PSO-BP网络引入到板形的识别与控制中。
3.
HPSO introduces evolutionary algorithm into particle swarm optimization(PSO),thus can get higher precision and faster convergence spe.
由于电力负荷内在的非线性特性,传统基于梯度搜索的参数辨识技术可能陷入局部最优,影响了预测精度,故提出了混合进化和粒子群优化算法。
4) particle swarm optimization
粒子群优化
1.
Multi-objective model of tolerance design and its solution with particle swarm optimization algorithm;
公差设计多目标模型及其粒子群优化算法研究
2.
Application of immune particle swarm optimization to job-shop scheduling problem;
免疫粒子群优化算法在车间作业调度中的应用
3.
Bayer material balance computation based on improved particle swarm optimization algorithm;
基于改进粒子群优化技术的拜耳法物料平衡计算
5) PSO
粒子群优化
1.
Transmission Network Optimization Planning Based on Hybrid PSO;
基于混合粒子群优化的电网优化规划
2.
PSO-Based Optimization of Signal Timing and Simulation for Isolated Intersection;
基于粒子群优化的单交叉口信号控制与仿真
3.
An optimal phase-factor selection algorithm for PTS based on PSO in OFDM;
OFDM中基于粒子群优化的PTS相位因子优选算法
6) Particle swarm optimization (PSO)
粒子群优化
1.
Particle swarm optimization (PSO) and filter preprocessing based on hamming window is used to search the registration parameters.
针对互信息在多模态医学图像配准中的局部极值问题,利用海明窗(Hamming窗)进行滤波预处理,并采用粒子群优化(Particle swarm optimization,PSO)方法搜索配准参数。
2.
The particle swarm optimization (PSO) algorithm is used to obtain the optimal solution to the minimization problem (i.
利用粒子群优化(PSO)算法在整个参数空间内并行搜索获得极小值优化问题的最优解(Wiener模型的最优估计),通过对粒子的迭代轨迹进行分析,改进了PSO算法中惯性权重和学习因子的选择。
3.
Due to the disadvantages of the canonical Particle Swarm Optimization (PSO), a new adaptive particle swarm optimization algorithm based on Sigmoid inertia weight was proposed.
针对粒子群优化算法存在的缺点,提出了基于Sigmoid惯性权值的自适应粒子群优化算法。
补充资料:分层
分层
stratification
l)当i笋j时,S,自气一必; 2)对所有的i6P,S,是局部闭的; 3)X=日;,S; 4)如果S,自瓦笋必,则S,C瓦(且在尸中,这等价于i共j). 作为一个例子,考虑R’中由不等式尸一少)0给出的子集分成四片退(二,夕):x,一夕,>0},{(x沙):t丫‘一厂,y>0},{(、,夕):厂一广y<叫,{o,0}. 现在,设X是一个光滑流形M的子集,X的分层是某个偏序集p的尸分解(S),。,,使得每片是NI的一个光滑子流形. 分层(S)称为瑚litney分层(认币i吹y stratifi以-‘ion)女11果对每对具有S.C=瓦的层S,,凡,下面的瑚ljtlley的条件A和B(V刃〕itlley‘5 cond itio斑A andB)成立.假设点列y*〔S收敛于y任S‘,点列x*E戈也收敛于ye凡·进一步,假设切平面兀*凡收敛于某个极限平面T和割线.不不收敛于某条线l(关于环绕流形M中y的某个局部坐标系),则 A)兀S,CT; B)l仁了 条件B)事实上蕴涵着条件A). 涉及V门石tney分层的几个事实和定理如下.一个解析流形的任何闭次解析子集允许一个V刃五切ey分层(〔A51).特别地,R”中的代数集,即由有限多个多项式为零给出的集合(也见半代数集(~‘日罗b几icsct))可以瑚litney分层,认币让ney分层空间可被三角音」分([ A41).分层啤口柱五cati即;c甲。中欣叫H川,亦称层化 一个(可能无限维)流形到严格缩减维数的连通子流形的分解.M.H.B创由互ex阳cK而撰【补注】通常,一个空间的“分层”仅只意味着到具有缩减维数的连通片中的某个分解. 设(尸,<)是一个偏序集.拓扑空问x的一个尸分解(尸~d邸nlposition)是以尸的元素为标号的X的子空间S,的局部有限集,使得
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条