说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 符号边划分数
1)  signed edge domatic number
符号边划分数
1.
It introduces the concept of the signed edge domatic number d′s(G) of a graph G on the basic of the signed edge domination,then studies the basic properties of d′s(G) and obtains the signed edge domatic number of Cn and Ki,r.
在符号边控制基础上,提出了符号边划分数概念,并研究了符号边划分数的一些性质,得到了圈Cn和星图K1,r的符号边划分数
2)  signed edge domination number
符号边控制数
1.
And further, The supper bounds of the minimum signed edge domination numbers B(n)for bipartite graphs of order n are given.
对于任意正整数m和n,构造了一类偶图(二部图)G(m,n),其阶为2mn,边数为3mn-m-n,确定了其符号边控制数为γ′s(G(m,n))=m+n-mn。
2.
In this paper the lower bounds of siged edge domination number of G are obtained, that is, γ, ( G) ≥ the signed edge domination numbers for several classes of graphs are determined.
设G为一个n阶连通图,△和δ分别为图G的最大度和最小度,给出了图G的符号边控制数的一个下界,即γ',并确定了几类特殊图的符号边控制数。
3.
Some super bounds for signed edge domination numbers of graphs are given, several corresponding problems and conjectures are presented.
本文给出了n阶图的符号边控制数的上界,并提出了相关的若干问题和猜想。
3)  reverse signed edge domination number
反符号边控制数
4)  signed edge total domination number
符号边全控制数
1.
In this paper we introduce the concept of signed edge total domination number γ~′_(st)(G) of a graph G,characterize all connected graphs with δ(G)2 and γ~′_(st)(G)=|E(G)|.
引入了图的符号边全控制的概念,主要刻划了满足sγt′(G)=|E(G)|且δ(G)2的所有连通图G,给出了n阶k-正则图G的符号边全控制数γst′(G)的下限,确定所有轮图的符号边全控制数,最后还提出了一个关于sγ′t(G)上界的猜想。
2.
We introduce the concept of signed edge total domination in graphs,obtain a lower bound for the signed edge total domination numbers of graphs,and determine the smallest signed edge total domination number for all tree of order n,and characterize all connected graphs with γ′st(G)=|E(G)|.
引入了图的符号边全控制的概念,给出了一个连通图G的符号边全控制数γs′t(G)的下限,确定所有n阶树T的最小符号边全控制数,并刻划了满足γs′t(G)=E(G)的所有连通图G,最后还提出了一个关于γs′t(G)上界的猜想。
5)  signed edge domination function
符号边控制函数
6)  k-signed edge domination number
k符号边控制数
补充资料:符号逻辑(见数理逻辑)


符号逻辑(见数理逻辑)
symbotic logic

  tun叩Iuo”_符号逻辑(s,mb。牡clog玩)见数理逻择。
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条