1) response of UV-visible Absorption spectrum
紫外-可见光吸收光谱响应
2) UV-VIS absorption spectrum
紫外-可见光吸收光谱
1.
This paper was based on quantitative analyzing tested by XRF and coloration mechanism study tested by UV-VIS absorption spectrum,it was found that the main components of synthetic blue and purple forsterite were MgO and SiO2,and coloration .
本文通过X射线荧光光谱的定量分析和紫外-可见光吸收光谱的颜色成因分析,得出人工合成的蓝紫色镁橄榄石的主要成分为MgO和SiO2,并添加了致色金属元素钴和钒,组份相对简单,蓝紫色调的产生与钴离子有关;对合成橄榄石、天然橄榄石和坦桑石进行拉曼光谱(785nm)的定性分析,得到合成镁橄榄石与天然橄榄石都具有特征Si-O伸缩振动引起的拉曼位移820cm-1、853cm-1和961cm-1,而坦桑石中存在特征Si-O伸缩振动引起的拉曼位移866cm-1、923cm-1和1148cm-1,可有效鉴定该三种矿物。
2.
The UV-vis absorption spectrum of the colloidal ZnS show.
在ZnS胶体的紫外-可见光吸收光谱上可观察到激子吸收峰,胶体的吸收带边约为313 nm,与其体相材料比较,有明显蓝移现象,显示出量子尺寸效应。
3) UV-Vis absorption spectra
紫外可见光吸收光谱
4) Ultraviolet and visible absorption spectra
紫外及可见光吸收光谱
5) UV-visible spectral response
紫外C可见光光谱响应
6) UV-Vis absorption spectrum
紫外-可见吸收光谱
1.
Hybrid materials of polyimide and europium acetate(PI/Eu(Ac)3)were made and characterized by FTIR and Uv-Vis absorption spectrum and XRD.
用傅立叶变换红外光谱和紫外-可见吸收光谱对制备的醋酸铕(Eu(Ac)3)与聚酰亚胺(PI)杂化材料(PI/Eu(Ac)3)进行了表征,结果表明,Eu3+离子与聚酰亚胺中的O,N发生配位;用XRD分析结果显示,PI/Eu(Ac)3杂化材料为无定形态,且Eu(Ac)3未团聚形成晶相。
补充资料:吸收光谱(紫外光和可见光)
吸收光谱(紫外光和可见光)
absorption spectra (UV and visible)
光透过某一物质时,某些波长的光被该物质吸收,因此在连续光谱中有一段或几段波长的光减弱了或消失了,这种光谱称为吸收光谱。不同物质的吸收光谱不同,这取决于物质的分子、原子和原子团,因此可用吸收光谱来鉴别物质和推测样品的结构;同时吸收光谱的强弱和物质的浓度有关,这个性质可用来做定量分析。
原理 入射光(0)经过均匀而透明的溶液时,一部分光被溶质吸收(),一小部分被反射(),只有一部分可以透过()。
0=++在化学分析中,常用一个“空白”溶液作为参考去校正反射的光,则可以忽略不计。
0=+此处 0又可以看作为透过“空白”的光强度,因为“空白”是不吸收任何光的。所以/0是透光率(),常用%来表示;但在实际应用中,往往用光吸收 ()来表示。
=log0/图a[还原型辅酶Ⅰ(NADH)的吸收光谱]是以来表示的吸收光谱,而图b[还原型辅酶Ⅰ(NADH)的吸收光谱]是文献中常见的以表示的吸收光谱,从这两个图谱可以了解到和的关系。
当某一物质吸收一定波长的光时,若此时=1,即其透过光的强度为照射光的10%;若=2,表示浓度大了一倍,其透过光的强度为照射光的1%。根据贝尔定律,=,为光吸收,为吸收系数,为吸收杯光径,为浓度。在溶液浓度不很大的情况下,由光在溶液中被吸收的程度,可以决定溶液的浓度,这就是吸收光谱定量分析的原理。
分光光度计的构造和性能 分光光度计通常包括光源,分光系统和受光器等几个主要部分:
光源 一般340纳米以上采用钨灯作为灯源,340纳米以下采用氢灯或氘灯作为灯源。在安装时,灯丝的位置要调节到恰好对准入光狭缝,此时灵敏度最佳。
分光系统 指把混合的灯源光分散成个别光波的装置。一般是特殊玻璃或石英制的棱镜;另一种色散系统是衍射光栅。
受光器 通常是光电池或光电倍增管。透过光的能量一般是很小的,受光器能把它转变成电流并放大,光电流的讯号和强弱再用电流计或记录仪显示或记录下来。光狭缝有两种表示方法,一种以毫米表示实际狭缝宽度,另一种用光谱狭缝表示,单位是纳米。狭缝愈小,光纯度愈高,但透过的光强度也愈弱,在实际应用中要根据实验的要求加以调整。存放样品的吸收杯,在测可见光时可采用玻璃制的吸收杯,在测紫外部分时必须采用石英吸收杯。
常用的分光光度计是直接读数或零点法,也有用记录仪记录的。
应用 任何物质只要它有吸收光谱,就可以用来做定性和定量分析。
定性分析 根据样品吸收曲线的形状,并与已知物质吸收光谱对比,可知其是否同一物质。譬如生物样品中,蛋白质吸收高峰一般在280纳米,核酸通常吸收高峰在260纳米。氧化型辅酶Ⅰ吸收高峰在260纳米,而还原型辅酶Ⅰ在 340纳米出现一个新吸收峰。几种不同的核苷酸,它们的250纳米/260纳米和280纳米/260纳米比值是各不相同的,可以方便地区别开。
定量分析 ①单组份定量,根据测量到的样品的光吸收值和已知的样品消光系数,可以计算出样品的量。②多组份分析,如果样品是个混合物,其中含有两种或两种以上的吸收物质,这些物质之间不起化学反应,其吸收光谱虽然互相重叠,但各自的吸收峰和峰谷是不同的,这样可以不经分离而直接用光谱法对各个组分进行定量测定。以两个组分A和B的混合物为例,选择二个波长,一个是A组分的最大吸收(),另一个是B组分的最大吸收(),再分别以A和B溶液在这二个波长下测出各自的消光系数(、、和),然后再用混合物在这二波长下测出光吸收和。因此
=+
=+这两个式中除和是未知浓度外,其余光吸收()和消光系数()均为已测知数,解这联立方程,即可计算出浓度和。③酶活性测定,当酶反应的底物或产物中有一个明显的吸收光谱时,借测这个生色基团的出现或消失速度可以跟踪酶的反应。例如氧化型和还原型辅酶Ⅰ的互变在 340纳米处有一个吸收峰的消失或生成,这一特性经常用于测定某些脱氢酶的活性。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条