1) denitrification enzyme activity
反硝化酶活性
1.
Variation in soil microbial biomass and denitrification enzyme activity among different succession stages under secondary forests in Guiyang,China
贵阳次生林不同演替阶段土壤微生物生物量与反硝化酶活性的研究
2) denitrifying enzyme
土壤反硝化还原酶活性
1.
The correlations between physical, chemical and biological properties and denitrifying enzyme activity, soil N2O flux were studied by field experiments during the course of wheat growing stages in both arid and semi-arid areas.
结果表明,在冬小麦生育期内,0—5cm土层土壤硝酸还原酶活性与相应土层土壤亚硝酸还原酶活性呈显著正相关,0—5cm,5—10cm土层土壤的温度与相应土层土壤硝酸还原酶活性呈显著负相关,土壤硝态氮含量和pH与土壤反硝化还原酶活性的相关性因土壤的不同土层而有差异;0—5cm,5—10cm土层土壤含水量,0—5cm,10—20cm土层土壤脲酶活性,5—10cm有机碳含量,硝酸还原酶活性与土壤中N2O排放通量呈显著正相关;5—10cm土层土壤温度、pH和10—20cm土层土壤磷酸酶活性、pH与之呈显著负相关。
3) denitrification activity
反硝化活性
1.
Effects of FACE on denitrification activity in paddy-field soil.;
开放式大气CO_2浓度增高对水稻土反硝化活性的影响
2.
Effects of heavy metal contamination on the population and its denitrification activity of denitrifying bacteria (DNB) were investigated after Huangsong, purple and red paddy soils were treated with Cd2+、As5+、Cu2+ and Pb2+ for four weeks under laboratory conditions.
在实验室条件下,研究Cd2+、As5+、Cu2+和Pb2+处理黄松稻田土、紫色稻田土和红壤稻田土后,4周内重金属污染对反硝化细菌种群数量及其反硝化活性的影响。
4) denitrification enzyme
反硝化酶
5) denitrifying enzymes
反硝化酶系
6) nitrification activity
硝化活性
1.
To investigate the mechanism of the effect of anoxic stress on nitrification, nitrification activity, catalase activity, peroxidase activity and the H2O2 resistance of nitrifying activated sludge were determined after 0h, 12h, and 24h exposure to anoxic environment.
为了研究缺氧胁迫对硝化活性的影响及其机理,采用分批培养法分别测定了经0、12、24h缺氧滞留处理的污泥硝化活性、过氧化氢酶活性和过氧化物酶活性,以及这些硝化污泥抗氧毒(过氧化氢)性能。
2.
The experiment results of sludge nitrification activity indicated that there were som.
对各区污泥进行的硝化活性试验结果表明,该一体化反应器的缺氧区内存活有一定数量的具有硝化活性的细菌。
3.
The inhibition of copper ion on nitrification activity of nitrifying bacteria in sediment and activated sludge were studied.
研究了铜离子对底泥和活性污泥硝化活性的抑制作用的差异。
补充资料:反硝化作用
硝酸盐在某些微生物的作用下还原为气态氮的过程。多发生于沼泽、湖泊和渍水土壤等缺氧环境中。其反应过程可简示为:2HNO3─→2HNO2─→2HNO─→N2。参与作用过程的微生物主要是反硝化细菌。作用的强度主要取决于土壤中的氧浓度和土壤pH。所有的反硝化细菌都是兼气性细菌,反硝化作用只有在土壤中的氧浓度较低时才能进行。当氧浓度减至5%以下时,反硝化作用明显增强。在过湿的环境中或在通气土壤的局部嫌气区(如根际),都能测得较明显的反硝化作用。反硝化作用的最适pH为7.0~8.2。当pH低至5.2~5.8或高达8.2~9.0时,反硝化作用的强度都会显著减弱。
在自然界,除上述通常由反硝化细菌引起的反硝化作用外,还常由以下途径使介质中的硝酸盐还原为气态氮:①某些微生物通过对硫的氧化或某些含硫化合物,而使硝酸盐还原:2S+6KNO3+2CaCO3─→2K2SO4+2CaSO4+2CO2+3N2。 ②通过纯化学过程使硝酸盐还原为气态氮。但这一过程与真正的反硝化作用不同。
由于反硝化作用导致土壤氮或施入土壤中的氮肥中氮的损失,因而对植物生长不利。农业生产上常需采取措施改善土壤通气状况和调节土壤酸度,防止和减缓反硝化作用的发生。
在自然界,除上述通常由反硝化细菌引起的反硝化作用外,还常由以下途径使介质中的硝酸盐还原为气态氮:①某些微生物通过对硫的氧化或某些含硫化合物,而使硝酸盐还原:2S+6KNO3+2CaCO3─→2K2SO4+2CaSO4+2CO2+3N2。 ②通过纯化学过程使硝酸盐还原为气态氮。但这一过程与真正的反硝化作用不同。
由于反硝化作用导致土壤氮或施入土壤中的氮肥中氮的损失,因而对植物生长不利。农业生产上常需采取措施改善土壤通气状况和调节土壤酸度,防止和减缓反硝化作用的发生。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条