1) Euler and Timoshenko beams
Euler和Timoshenko梁
2) Timoshenko beam
Timoshenko梁
1.
Study on natural frequency computation for different slenderness ratios by Timoshenko beam and Euler-Bernoulli beam formulas;
Timoshenko梁和Euler-Bernoulli梁计算I字型钢简支梁固有频率的临界长细比探讨
2.
Vibrational power flow of damaged Timoshenko beam;
损伤Timoshenko梁振动功率流特性
3.
Dynamic optimization of Timoshenko beam with internal elastic support under axial force;
轴力作用下带弹性支座的Timoshenko梁的动力优化
3) Euler beam
Euler梁
1.
Analysis of dynamic responses of soil with double Euler beam under moving load;
移动荷载作用下双层Euler梁模型土动力响应分析
2.
The transient dynamic response to an Euler beam rested on the elastic foundation subjected to the transverse dynamic load is studied.
研究了弹性基础上横向动力载荷作用下Euler梁的瞬态动力响应问题。
3.
Based on the reproducing conditions(or consistency conditions),a new meshfree double-variable approximation is proposed for Euler beam analysis.
基于再生条件建立了一种用于Euler梁(薄梁)分析,同时考虑挠度和转角影响的双变量无网格计算方法。
4) Timoshenko laminated composite beam
Timoshenko层合梁
5) Timoshenko ring beam
Timoshenko曲梁
6) Timoshenko beam theory
Timoshenko梁理论
1.
Based on the mathematical similarity in the eigenvalue problem of Euler-Bernoulli beam theory, Timoshenko beam theory and Reddy’s third-order beam theory, relationships of the eigenvalues of the three theories for simply-supported beams are investigated.
利用Euler-Bernoulli梁理论(EBT)、Timoshenko梁理论(一阶理论,TBT)和Reddy三阶梁理论(RBT)之间,梁的特征值问题在数学上的相似性,研究了不同梁理论之间特征值的关系。
2.
Since the Timoshenko beam theory(TBT)with two generalized displacements was firstly presented by Timoshenko in 1922,it was widely used both in research and engineering,especially in the analysis of the transverse vibration of non-slender beams.
上世纪20年代,Timoshenko提出了具有两个广义位移的梁的理论,称为Timoshenko梁理论(TBT~1)。
3.
The current beam theories are the Euler-Bernoulli beam theory and the Rayleigh-Timoshenko beam theory.
现有的梁理论主要有Euler-Bernoulli和Rayleigh-Timoshenko梁理论,本文从现有的Timoshenko梁理论入手,先后介绍了几种计算Timoshenko梁动力响应的理论方法:模态叠加法、传递矩阵法和回传射线矩阵法,并应用几种方法分别计算单跨梁、两跨连续梁的自振频率、稳态响应和瞬态响应,总结了各种计算方法的适用性、优缺点。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条