1) least-squares mixed finite elements
最小二乘混合元
1.
Fully discrete least-squares mixed finite elements method is discussed for the miscible displacement of one incompressible fluid by another in a porous media.
讨论了不可压缩混流驱动问题的全离散最小二乘混合元方法。
2) mixed least-square finite element
混合元最小二乘
1.
Based on this weak form, a new kind of numerical methods for two-phase displacement problems is proposed: the mixed least-square finite element m.
为此,对该问题,本文中首先导出了混合元最小二乘方法的等价弱形式,并且证明了弱形式的对称正定性,在此基础上,提出了用混合元最小二乘方法求解压力方程,用特征有限元方。
3) least-squares mixed finite element
最小二乘混合有限元
1.
In the paper,we discuss the method of least-squares mixed finite element for steady state viscoelastic fluid flow.
针对于定常的服从OldroydB型本构律的粘弹性流体流动建立了一种最小二乘混合有限元方法。
2.
A least-squares mixed finite element procedure with the method of characteristics for convection-dominated diffusion equations was presented.
将最小二乘混合有限元法与特征有限元法有效地结合起来处理对流占优扩散方程。
3.
A superconvergence result is obtained in this paper for approximate solutions of second-order elliptic equations by least-squares mixed finite element methods over quadrilaterals,which in dicates an accuracy of O(h r+2 ) if Raviart-Thomaselements of order r are employed with optimal error estimate of O(h r+1 ).
使用强正规四边形剖分 ,得到了二阶椭圆方程的最小二乘混合有限元解的超收敛估计 ,它具有O(hr+2 )的精度 ;而当采用r阶的Raviart-Thomas元所得到的最优阶估计精度为O(hr+2 ) 。
4) least square Petrov-Galerkin finite element method
Petrov-Galerkin最小二乘混合元法
6) nonlinear Galerkin/Petrov-least squares mixed element method
Galerkin/Petrov最小二乘混合元法
1.
In this paper, a nonlinear Galerkin mixed element method, a Galerkin/Petrov-least squares-type mixed finite element method and a nonlinear Galerkin/Petrov-least squares mixed element method for the stationary conduction-convection problems are presented and analyzed, respectively.
本文分别给出了定常的热传导-对流问题的非线性Galerkin混合元法、Galerkin/Petrov最小二乘混合元法和非线性Galerkin/Petrov最小二乘混合元法,并证明这些方法的解的存在唯一性和收敛性。
补充资料:非线性最小二乘拟合
分子式:
CAS号:
性质:用最小二乘法拟合非线性方程。有些变量之间的非线性模型,通过变量变换可以化为线性模型,此称为外在线性。而有些变量之间的非线性模型,通过变量变换不能化为线性模型,通称为内在非线性。对于非线性模型y=f(ξ,θ)+ε,其残差平方和。S(θ)是θ的函数,当模型关于θ是非线性的,正规方程关于θ也是非线性的。基于使残差平方和s(θ)达到极小的原理求出θ的估计值,拟合非线性回归方程。
CAS号:
性质:用最小二乘法拟合非线性方程。有些变量之间的非线性模型,通过变量变换可以化为线性模型,此称为外在线性。而有些变量之间的非线性模型,通过变量变换不能化为线性模型,通称为内在非线性。对于非线性模型y=f(ξ,θ)+ε,其残差平方和。S(θ)是θ的函数,当模型关于θ是非线性的,正规方程关于θ也是非线性的。基于使残差平方和s(θ)达到极小的原理求出θ的估计值,拟合非线性回归方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条