说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 数列极限定义
1)  limit of number sequence
数列极限定义
1.
The limit of number sequence is an abstract concept and of high theory nature.
数列极限定义是理论较强又很抽象的数学概念,可以借助实例及几何图形来描述,以启发和加深学生对这一概念的理解。
2)  standard limit theory
极限定义
3)  sequence limit
数列极限
1.
It is well known,the limit discusses including the sequence limit,the limit of function two kinds.
众所周知,极限论包括数列极限、函数极限两类。
2.
The calculation of sequence limit which has a wide application is the main constituent of the limit theory.
数列极限的计算是极限理论的重要组成部分,有着广泛的应用。
3.
It is well known, the limit discusses including the sequence limit, the limit of function two kinds.
本文针对高等数学中数列极限的初等变形求极限、利用变量替换、两边夹定理、归结原则、定积分法、单调原理、级数展开式、Stolz公式等来讲述数列极限的几种求法。
4)  limit of a sequence
数列极限
1.
"Arbitrariness" property ε and"infinitary"property of Nare key points to understand the definitionof limit of a sequence.
ε的"任意性"和N的"无穷性"是理解数列极限ε—N定义的关键所在,从两个诡辩问题实例出发阐述了ε—N定义中ε的"任意性"和N的"无穷性"。
2.
First, this arcdcle analyzes the abstract administrative levels of the limit of a sequence concept, then brings forward the presence of the kernel concept and checks up the idea by the education experiment to reveal the internal structure of this concept.
首先运用抽象度分析法定量地对数列极限概念的抽象层次进行分析,然后提出核心抽象概念存在,并运用教育实验检验猜想, 试图揭示概念丰富的内涵。
5)  limit of sequence
数列极限
1.
The equivalent definition and function of the definition of the limit of sequence;
数列极限定义的等价定义及其作用
6)  limit of sequences
数列极限
1.
With the principle of summing up, the problem about the limit of functions converted into the limit of sequences is discussed in the paper, the properties and the existence of the limit of functions are proved, so that the relation between the limit of sequences and the limit of functions is described more clearly.
本文用归结原则将函数极限问题转化为数列极限问题去讨论,证明了函数极限性质与极限存在的判定定理,进而更清晰的刻画了函数极限与数列极根之间的关系。
补充资料:上极限和下极限


上极限和下极限
upper and lower limits

  上极限和下极限【u即era闭lower功l‘ts;。epx“戚,”“袱n“匆npe八e月M」 l)序列的上极限和下极限分别是给定的实数序列的所有部分(有限的和无穷的)极限(1而jt)中的最大极限和最小极限.对于任何实数序列{二。}(。=l,2,…),在扩充的数轴上(即在增添符号一的和+的的实数集合中)它的所有部分(有限的和无穷的)极限的集合是非空的,并且具有最大元素和最小元素(有限的和无穷的).部分极限的集合的最大元素称为序列的上极限(up详r lin五t)(腼sup),记为 。呱x。或。叭s叩x。,而最小元素称为下极限(lowerUmit)(Uminf),记为 黑‘·或。叭讨二。.例如,如果 x。=(一1)月则 黑‘”一’,。叭‘一‘·如果 x,,二(一l)”n,则 黑‘·一叭。叭二。一十二.如果 x,=n+(一1)”n,则 澳“一”,悠’一+呱任何序列都具有上极限和下极限,并巨如果一个序列是上(下)有界的,则它的上(下)极限是有限的.一个数a是序列{x。全(陀=1,2,…)的上(下)极限,当且仅当对于任何£>0,下述条件成立:a)存在数刀:,使得对于所有的指标n>。。,不等式x。a一。)成立:b)对于任何指标。。,存在指标”‘=n‘(£,n。),使得对于所有的指标n’>n。,不等式x。>a一。(x。十动成立.条件tl)意味着:对于给定的£>0,在序列{x。}中只存在有限个项无、,使得x。>a+。(x。<“一的.条件b)意味着:存在无穷多项x,.,使得x。>a一。(x。<“+。).如果两个极限都是有限的,则通过改变序列各项的符号,可使下极限化为上极限: 黑“·一。叭‘二 为使序列{x。}(n二1,2,…)具有极限(有限的或无穷的(等于符号一的和+的之一)),其必要和充分条件是 黑x一、,只义二 2)函数f(劝在一点x.,处的上(下)极限是f(x)在x。的一个邻域中的值的集合的上(下)界当这个邻域收缩到x{、时的极限.上(下)极限记为 画.f(·)[、f(·)〕· 设函数、f(x)定义在度量空间R上,并且取实数值.如果x{、〔尺,o(x。;。)是x。的s邻域,。>0,则丽f‘、、一l、f su。,丫·、1 L义‘O(尤。,£)J和 黑f(·)一、{二。黑;:,f(·))·在每一点xoR处,函数f(:)具有上极限了丈灭)和下极限‘f(x)(有限的或无穷的).函数了下刃在R上是上半连续的,函数f(x)在R上是下半连续的(在取值于扩充数轴的函数的半连续概念的意义下,见半连续函数(~一continuous function)). 为使函数.f(x)在点、。处具有有限的或无穷的(等于+的或一田)极限,其必要和充分条件是 华黑f(x)一煦。j.(’)· 函数在一点上的上极限(下极限)的概念可以自然地推广到定义在拓扑空间上的实值函数的情况. 3)集合序列{A。}(n=1,2,…)的上极限和下极限芬另i是集合 A二户叹A。,它是由属于无穷多集合A。的元素x组成的,以及集户乙、 县=业坠A。,它是由属于从某个指标”=n(x)开始的一切集合A。的元素x组成的.显然,Ac万【补注】在英文中,上极限又称supenorlin五t或】ilnitsllperior,下极限又称加几rior limit或止面t inferior.亦见上界和下界(upper and kiwer boullds). 一个集合的子集序列A,,A:,…的上极限和下极限由下列公式给出二 。叭式一*口招*态, 黑通一月贝户/
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条