1) laser molecular beam
激光分子束
1.
Magnetic and electrical properties of Fe_3O_4 thin films on MgO(100) substrates by laser molecular beam epitaxy
Fe_3O_4/MgO(100)薄膜的激光分子束外延与磁电学性能
2) laser ablation-molecule beam
激光溅射-分子束
3) L-MBE
激光分子束外延
1.
Highly oriented ZnO thin films were prepared on C-plane sapphire substrates by laser molecular beam epitaxy(L-MBE) at the growth temperature of 250,300,350,400 and 450℃.
在蓝宝石C面上利用激光分子束外延(L-MBE)的方法,分别在250、300、350、400和450℃下生长了高度C轴取向的ZnO薄膜,并对样品进行了X射线衍射、光致发光谱及反射式高能电子衍射的分析。
2.
High quality ZnO films are deposited on SiN_x/Si substrate by laser molecular beam epitaxy(L-MBE).
采用激光分子束外延法(L- MBE)在SiNx/Si(111)衬底上制备了高质量的ZnO薄膜,用X射线衍射(XRD)和原子力显微镜(AFM)对薄膜的晶体结构、表面形貌进行了表征,结果表明ZnO薄膜有高度的c轴择优取向,薄膜表面平整致密。
3.
C-axis highly oriented ZnO thin films were prepared on C-plane sapphire substrates by laser molecular beam epitaxy(L-MBE) at the growth temperature of 250℃,300℃,350℃,400℃ and 450℃.
在蓝宝石C面上利用激光分子束外延(L-MBE)的方法,分别在250℃、300℃、350℃、400℃和450℃生长了高度C轴取向的ZnO薄膜。
4) Laser Molecular Beam Epitaxy
激光分子束外延
1.
The Technique of Laser Molecular Beam Epitaxy for Thin Films;
激光分子束外延制备薄膜技术
2.
Compared with metal organic chemical vapor deposition and magnetron sputtering, laser molecular beam epitaxy is an advanced technology developed in recent years and has stronger and stronger co.
与金属有机物化学气相沉积和磁控溅射相比,激光分子束外延技术(L MBE)是近年来发展的一种先进的薄膜生长技术,在氧化锌薄膜生长的研究中因其独特的优越性显示出越来越强的竞争力。
3.
High quality crystalline zinc oxide thin films were grown on sapphire substrate with lower temperature by laser molecular beam epitaxy (L-MBE) and using a sintered ZnO ceramic as target.
用激光分子束外延(lasermolecularbeamepitaxy,L MBE))工艺,采用 这种靶材在蓝宝石基片上较低温度下生长了高结晶质量的ZnO半导体光电子薄膜。
5) laser ablation-molecular beam
激光烧蚀-分子束
6) Pulsed laser molecular beam epitaxy
脉冲激光分子束外延
补充资料:原子束和分子束
在高真空中定向运动的原子或分子流。美国科学家I.I.拉比等人对近代原子束、分子束技术的发展作出了创始性贡献。
原子束和分子束是研究原子和分子的结构以及原子和分子同其他物质相互作用的重要手段。固体、液体和稠密气体中原子或分子间距离较小,有着复杂的相互作用,很难研究其中孤立分子的性质,稀薄气体中分子间距离较大,其相互作用随压强的减小变弱,但因分子的无规则运动,使得对分子本身的探测和研究较困难。在原子束或分子束中,原子或分子作准直得很好的定向运动,它们之间的相互作用可以忽略,因此可以认为束流是运动着的孤立原子或分子的集合,可用以研究分子、原子本身性质以及分子、原子与其他粒子的相互作用。这类研究对原子和分子物理、气体激光动力学、等离子体物理、微观化学反应动力学、空间物理、天体物理以及生物学的一些领域都非常重要。此外,还可用原子束、分子束来研究物体的表面和固体结构。
产生 原子束、分子束的实验装置大体可分为原子或分子准直束源、实验区和探测器三个部分。简单的原子束或分子束源是一个带有准直小孔的密封气室称源室,原子或分子从准直小孔射出。在正对束源小孔一定距离处,安置另一小孔管用以准直束流,称尖削器,通过管孔的分子才能进入实验区。对于在室温下蒸气压很低的固体物质,可加热使其汽化,调节源室的温度即可控制室内蒸气压。从源室射出的原子或分子在相邻的高真空实验区中产生了束。束流原子和分子的平均速度约为105cm/s。也可用离子源产生的离子经电场加速、聚焦,再加上电子以产生较高速度的原子束或分子束,其原子或分子的速度可达107cm/s 或更高,并处于受激态。但炉中的蒸气压并不高,原子、分子束的流强也不大。若想获得高强度的分子束,可使气体从高气压区通过微型喷口,绝热膨胀到真空室,形成超声分子束。经此过程,分子的部分内能转化为定向平移的动能,分子得到冷却,分子束的流强也提高了。
探测 可借表面电离法探测原子、分子束,当用束轰击金属表面时,束中电离势低的原子,因碰撞失去电子而成为正离子。测量离子流即可检测原子或分子数。还可借较高能量的束粒子轰击固体表面时所产生的次级电子束探测束中的粒子数。当束流很弱时,用电子倍增器进行脉冲记数,即可大大提高检测灵敏度。实验区和探测器部分一般都处于高真空中。
应用 由于调频激光器的激光束与原子分子束交叉时,就能够有选择地把束中的原子或分子激发到特定的受激态,包括分子中的转动、振动和电子受激态,就有可能研究原子或分子处于一定受激态时各种类型的碰撞截面、相互作用势和化学反应,这是一个新的、很大的研究领域。
通过不同频率激光的级联激发,还可以使束中原子激发到高受激态和自电离态,从而研究这些态的性质。这类原子态的场电离和自电离几率都很大(接近于1),电离产生的离子可进行计数。所以,只要能使原子变成离子就可检测。采取一定措施,提高灵敏度,消除检测中的本底噪声后,就可以实现单个原子的检测。
当分子具有磁或电偶极矩时,可以通过外加磁场和电场与偶极矩的相互作用来选择偶极矩取向,使不同偶极矩的原子和分子在空间分离。采取这种措施,就可进行精密的原子、分子束波谱实验,精确测量原子核的磁矩,发展原子和分子的频率或时间的测量标准。
低流强的原子、分子束和光束作用时,可以忽略原子、分子光谱线的碰撞增宽(见谱线增宽);还可采用有选择性的饱和吸收和对驻波场的双光子跃迁的办法,进一步消除原子、分子谱线的多普勒增宽,这就能以极高的精度研究自由原子及分子的光谱和能级。通过一些适当安排,还能测量兰姆移位,验证量子电动力学,并测定一些基本的物理常数。
参考书目
N.F.Ramsey,Molecular Beams, Oxford Univ. Press,London, 1956.
N. F. Ramsey, Physics Today, pp. 25~30, July, 1980.
Y. T. Lee and Y. R. Shen, Physics Today, pp.52~59,November,1980.
原子束和分子束是研究原子和分子的结构以及原子和分子同其他物质相互作用的重要手段。固体、液体和稠密气体中原子或分子间距离较小,有着复杂的相互作用,很难研究其中孤立分子的性质,稀薄气体中分子间距离较大,其相互作用随压强的减小变弱,但因分子的无规则运动,使得对分子本身的探测和研究较困难。在原子束或分子束中,原子或分子作准直得很好的定向运动,它们之间的相互作用可以忽略,因此可以认为束流是运动着的孤立原子或分子的集合,可用以研究分子、原子本身性质以及分子、原子与其他粒子的相互作用。这类研究对原子和分子物理、气体激光动力学、等离子体物理、微观化学反应动力学、空间物理、天体物理以及生物学的一些领域都非常重要。此外,还可用原子束、分子束来研究物体的表面和固体结构。
产生 原子束、分子束的实验装置大体可分为原子或分子准直束源、实验区和探测器三个部分。简单的原子束或分子束源是一个带有准直小孔的密封气室称源室,原子或分子从准直小孔射出。在正对束源小孔一定距离处,安置另一小孔管用以准直束流,称尖削器,通过管孔的分子才能进入实验区。对于在室温下蒸气压很低的固体物质,可加热使其汽化,调节源室的温度即可控制室内蒸气压。从源室射出的原子或分子在相邻的高真空实验区中产生了束。束流原子和分子的平均速度约为105cm/s。也可用离子源产生的离子经电场加速、聚焦,再加上电子以产生较高速度的原子束或分子束,其原子或分子的速度可达107cm/s 或更高,并处于受激态。但炉中的蒸气压并不高,原子、分子束的流强也不大。若想获得高强度的分子束,可使气体从高气压区通过微型喷口,绝热膨胀到真空室,形成超声分子束。经此过程,分子的部分内能转化为定向平移的动能,分子得到冷却,分子束的流强也提高了。
探测 可借表面电离法探测原子、分子束,当用束轰击金属表面时,束中电离势低的原子,因碰撞失去电子而成为正离子。测量离子流即可检测原子或分子数。还可借较高能量的束粒子轰击固体表面时所产生的次级电子束探测束中的粒子数。当束流很弱时,用电子倍增器进行脉冲记数,即可大大提高检测灵敏度。实验区和探测器部分一般都处于高真空中。
应用 由于调频激光器的激光束与原子分子束交叉时,就能够有选择地把束中的原子或分子激发到特定的受激态,包括分子中的转动、振动和电子受激态,就有可能研究原子或分子处于一定受激态时各种类型的碰撞截面、相互作用势和化学反应,这是一个新的、很大的研究领域。
通过不同频率激光的级联激发,还可以使束中原子激发到高受激态和自电离态,从而研究这些态的性质。这类原子态的场电离和自电离几率都很大(接近于1),电离产生的离子可进行计数。所以,只要能使原子变成离子就可检测。采取一定措施,提高灵敏度,消除检测中的本底噪声后,就可以实现单个原子的检测。
当分子具有磁或电偶极矩时,可以通过外加磁场和电场与偶极矩的相互作用来选择偶极矩取向,使不同偶极矩的原子和分子在空间分离。采取这种措施,就可进行精密的原子、分子束波谱实验,精确测量原子核的磁矩,发展原子和分子的频率或时间的测量标准。
低流强的原子、分子束和光束作用时,可以忽略原子、分子光谱线的碰撞增宽(见谱线增宽);还可采用有选择性的饱和吸收和对驻波场的双光子跃迁的办法,进一步消除原子、分子谱线的多普勒增宽,这就能以极高的精度研究自由原子及分子的光谱和能级。通过一些适当安排,还能测量兰姆移位,验证量子电动力学,并测定一些基本的物理常数。
参考书目
N.F.Ramsey,Molecular Beams, Oxford Univ. Press,London, 1956.
N. F. Ramsey, Physics Today, pp. 25~30, July, 1980.
Y. T. Lee and Y. R. Shen, Physics Today, pp.52~59,November,1980.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条