2) adjacent strong total chromatic number of graphs
邻点可区别的全染色数
3) adjacent vertex distinguishing total coloring and chromatic number
邻点可区别的全染色和全色数
4) adjacent Vertex-distinguishing total coloring
邻点可区别全染色
1.
On the adjacent vertex-distinguishing total coloring of K(r,2m);
图K(r,2m)的邻点可区别全染色
2.
The adjacent vertex-distinguishing total coloring of k-multi-Mycielski the graphs;
多重Mycielski图的邻点可区别全染色
3.
On the adjacent vertex-distinguishing total coloring of some generalized Petersen graphs;
若干广义Petersen图的邻点可区别全染色
5) adjacent-vertex-distinguishing total coloring
邻点可区别全染色
1.
For a connected graph G with an order no less than 2,the adjacent-vertex-distinguishing total coloring on it means that the color and color set of arbitrary two adjacent vertices on G is different and,furthermore,the color of arbitrary two adjacent sides with a vertex is different from that of their correlative sides as well.
设G是阶数不小于2的连通图,则其邻点可区别全染色是指G中任意两个相邻的顶点有不同的颜色和色集合,且任意相邻的两条边及一个顶点与其关联边的颜色也不相同。
2.
For f, if any pair adjacent vertices have different color sets, then f is called an adjacent-vertex-distinguishing total coloring.
对此f,如果G的任意两个相邻顶点的色集合不同,则称f为G的邻点可区别全染色。
3.
Let x_(at)(G)=min{k|G has a k-adjacent-vertex-distinguishing total coloring}.
如果f是k-正常全染色,且对任意u,v∈V(G),uv∈E(G),有C_f(u)≠C_f(v),那么称f为图G的邻点可区别全染色(简称为k-AVDTC)。
6) adjacent vertex distinguishing total coloring
邻点可区别全染色
1.
On the adjacent vertex distinguishing total coloring of p_m×K_(n,n)
p_m×K_(n,n)的邻点可区别全染色
2.
On the adjacent vertex distinguishing total coloring of a class of join-graph
一类沿联图的邻点可区别全染色
3.
The adjacent strong edge colorings of generalized Mycielski′s graph M_n(C_p) of cycle C_p and the adjacent vertex distinguishing total coloring of the generalized Mycielski′s graph M_n(K_p) of complete graph K_p was studied.
研究了圈Cp和完全图Kp的Mycielski′s图的邻强边染色和邻点可区别全染色的问题,得到了如下结果:如果连通图G(V,E)满足a′χs(G)=Δ(G),则χas(Mn(G))=Δ(Mn(G));圈的Mycielski′s图的邻强边色数为5;p阶完全图的Mycielski′s图的邻点可区别全染色为2p。
补充资料:超数染色体
超数染色体
生物体拥有的整套染色体以外的染色体。数目常有变化,但对个体的表型可无显著影响,又叫"B染色体"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条