说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 区域概率
1)  region probability
区域概率
2)  areal probability distribution
区域概率分布
1.
Because of the problem of spatial correlation, the areal probability distribution of any weather element can not be analysed directly from its single point data.
以区域场相关性为出发点 ,通过正态化转换和 Monte Carlo方法 ,建立和实现了区域概率分布模型——锯齿波模型。
3)  single-area-infected-probability
单个区域被感染概率
1.
Two early warning indexes,single-area-infected-time and single-area-infected-probability,were given.
为了解决网络蠕虫造成网络严重拥塞的问题,根据路由器的拓扑位置把网络划分成若干区域,预测蠕虫传播方向,提出"单个区域被传染时间"和"单个区域被感染概率"两项预警指标,采用模糊推理得到单个区域的警报等级。
4)  hit area circular error probability
命中区域圆概率偏差
1.
Specifically,the hit area circular error probability(ACEP) is defined as an accuracy index for the area target and further a Monte Carlo integral method is designed for calculating ACEP.
建立了一种针对导弹武器射击面目标的精度评定方法,定义了命中面目标的精度指标命中区域圆概率偏差,设计了基于蒙特。
5)  regional general situation
区域概况
6)  interval probability
区间概率
1.
We use the likelihood function and belief function in the D-S theory to calculate the upper boundary and lower boundary of the interval probability of fault occurrence in elementary events in FTA.
使用D-S理论中的似然函数和信任函数分别作为故障树分析中底事件发生故障的区间概率的上下界,采用区间分析理论,构造与门区间算子、或门区间算和表决门区间算子,进行故障树量化计算。
2.
In this paper,based on the idea of fuzzy number origin,an interval probability space of the finite origin is established by the operation of fuzzy probability.
基于模糊数源思想 ,用Fuzzy概率运算方法建立有限源区间概率空间 ,给出了区间概率随机变量 (向量 )及其分布函数、分布列、期望区间、方差区间等的定义 ,并研究了其中的一些特定运算规律。
3.
Bayesian Networks can been expanded to Bayesian Networks appending interval probability by using interval probability to replace the probability tables in Bayesian Networks.
用区间概率代替贝叶斯网中的点概率,将贝叶斯网扩展为带区间参数的贝叶斯网,使得贝叶斯网更具一般性。
补充资料:分布(概率)


分布(概率)
Distribution (probability)

分布(概率)[distributioin(probabi-lity)〕 一系列独立试验的结果、一些随机变量或误差,经常出现在一些相当正规并可预测的模型中。这些模型可以用数学方法表达出来,其中最重要的称为二项分布、正态分布和泊松分布。 二项分布考虑n次独立试验,每一次试验的结果或者是成功S,或者是失败F,其相应的概率分别为P和q一1一P。以S。表示成功的次数。因为共有(艾)种可能的方法来选择;处成功和,一;处失败,所以随机变量S。的概率分布由p‘S。一‘卜{艾)户,、一给出.这里k二。,1,一,n。这就是二项分布,它的数学期望为np.方差为n闪。参阅“概率论”(probability)条。 如果按照第k次试验是成功还是失败来令随机变量X。等于1或。,那么S。二XI+…十X。。因此.根据中心极限定理,此二项分布可以用正态分布来通近。这个特别的情形称为棣美弗一拉普拉斯定理,设 二,一(*一,户)(,:户。)一告定理断言,当n~Qo时,在一个趋于o的百分误差之内,我们有 P{S,二k}一(2万)一“Zexp(一二是/2), P{a0,25%的场合有S。>o。67n,/2,大约在16%的场合中5。>Znl/,,等等。中心极限定理并不是说,在一次这样的游戏中,和数S,,52,…中大约有一半是正的。事实上,反正弦定律表明,其相反的情形是真的:即所有S,>0比正负各半的情况更可能。 多元正态分布上面的理论可以不作本质的改变推广到。维的情形。。维正态密度定义为(2二)一袱Dl/se一Q(了1一,,/2,这里Q是一个以D为行列式的正定二次型,其协方差矩阵是Q的矩阵的逆。如果随机变量X;,…,X。的n维联合分布是正态的,那么每一个X,也是正态的。但其逆不真,这一点在教科书中都可以找到。多元正态分布对平稳随机过程是很重要的。参阅“随机过程”(stoehastie process)条。 泊松分布参数为入的泊松分布是一个以概率_,几去_.,__、…_、,.尸。一尸前取值走‘走一。,‘,“,’‘”的概率分布·其数学期望与方差都等于又。这是最重要的分布之一,它在随机过程的理论和许多应用中起着基本的作用。对它的性状的充分理解可以从它原始的出处和考虑它的许多推广中得到。然而,有很多可以由下面的从二项分布出发的初等阐述中得到。 考虑n次独立试验,n是一个大数,每一次试验的结果,或者是成功,或者是失败,概率分别为P与q一1一P。通常只感兴趣于P很小、但成功的平均数nP一凡却具有中等程度大小的情形。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条