2) adjacent vertex-distinguishing incidence chromatic number
邻点可区别关联色数
1.
Incidence chromatic number and adjacent vertex-distinguishing incidence chromatic number of hexagonal systems;
六角系统关联色数与邻点可区别关联色数
3) incidence vertex-distinguishing total coloring
关联邻点可区别全染数
4) vertex-edge adjacent vertex-distinguishing total coloring
点边邻点可区别全色数
1.
f is a mapping from V(G)∪E(G) to {1,2,…,k},then it is called the vertex-edge adjacent vertex-distinguishing total coloring of G if uv∈E(G),f(u)≠f(uv),f(v)≠f(uv),uv∈E(G),C(u)≠C(v),and the minimum number of k is called the vertex-edge adjacent vertex-distinguishing total chromatic number of G,where C(u)={f(u)}∪{f(uv)|uv∈E(G)}.
对简单图G(V,E),存在一个正整数k,使得映射f:V(G)∪E(G)→{1,2,…,k},如果对uv∈E(G),有f(u)≠f(uv),f(v)≠f(uv),且C(u)≠C(v),则称f是图G的点边邻点可区别全染色,且称最小的数k为图G的点边邻点可区别全色数。
5) adjacent vertex distinguishing incidence coloring
邻点可区别关联着色
1.
The concepts of adjacent vertex distinguishing incidence coloring and the adjacent vertex distinguishing incidence coloring number of graphs are defined on the basis of the concept of incidence coloring of graphs.
在图的关联着色概念的基础上定义了图的邻点可区别关联着色及邻点可区别关联色数,研究了圈、完全二部图、Cm。
6) adjacent vertex-distinguishing incidence coloring
邻点可区别关联着色
1.
On the adjacent vertex-distinguishing incidence coloring of general Mycielski graphs;
关于图的广义Mycielski图的邻点可区别关联着色
2.
The adjacent vertex-distinguishing incidence coloring is raised based on the definition of incidence oloring,and incidence coloring satisfiying the sets of the colors of two adjacent vertices are different.
邻点可区别关联着色的定义是在关联着色的基础上提出的,是使得相邻顶点的颜色集不同的关联着色。
3.
The adjacent vertex-distinguishing incidence coloring is incidence coloring satisfiying the sets of the colors of two adjacent vertices are different.
邻点可区别关联着色是使得相邻顶点的颜色集不同的关联着色。
补充资料:思北邻韩二翁西邻因庵主南邻章老秀才
【诗文】:
乡闾耆宿非复前,老章病死今三年。
朝来出门为太息,不见此翁催社钱。
我比翁虽差识字,向来推择尝为吏,事功自计无一毫,尚不如翁终日醉。
【注释】:
【出处】:
乡闾耆宿非复前,老章病死今三年。
朝来出门为太息,不见此翁催社钱。
我比翁虽差识字,向来推择尝为吏,事功自计无一毫,尚不如翁终日醉。
【注释】:
【出处】:
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条