1) both sides grip
两边夹
1.
Heine theorem to proving the four fundamental rules of functional limit and both sides grip theorem of functional limit and introduces a new method for testifying to the four fundamental rules of functional limit and the both sides grip theorem of functional limit.
Heine定理来证明函数极限的四则运算和函数极限的两边夹定理,同时给予函数极限的四则运算与函数极限的两边夹定理的证明的新方法。
2) double side approximation
两边夹定理
1.
It proves the existence of the series(1+1/n)~n Limit in a new way based on the use of multinest of Closed Interval theorem and double side approximation.
引入两个具有严格单调性的辅助数列,构造闭区间套,利用闭区间套定理和两边夹定理对数列1+1nn极限存在性给出一种新的证明方法。
3) theorem of intermediate function
两边夹原理
4) two adjacent edges simply supported and the other two adjacent edges clamped
两邻边铰支两邻边夹紧
1.
In the paper, von Karman type orthotropic rectangular plates with two adjacent edges simply supported and the other two adjacent edges clamped are analysed by using Galerkin method.
利用 Galerkin方法分析了 von- Karm an型两邻边铰支两邻边夹紧正交各向异性矩形板。
2.
All five-displacement functions satisfy the boundary conditions that two adjacent edges simply supported and the other two adjacent edges clamped.
选定的5个位移函数均满足两邻边铰支两邻边夹紧边界条件。
5) two-kidney two-clip
两肾两夹
1.
Comparision of left ventricular hypertrophy induced by two-kidney two-clipped renovascularly hypertensive and spontaneously hypertensive rats;
两肾两夹高血压与自发性高血压大鼠左心室肥厚的比较
6) clamping-edge
夹边
1.
Based on the existing intersection test algorithms,a fast coincident intersection test algorithm for 3-D convex polygons based on clamping-edge pairs is presented,which provides a coincident computational method for the overlap judgement between convex polygons,and expands the algorithm application object to the free 3-D convex polygons.
本文在对现有的相交检测算法进行研究的基础上,提出了基于夹边边对的空间平面凸多边形快速相交检测算法,为平面凸多边形间判交问题提供了一致的计算方法,并将算法的应用对象扩展到任意空间平面凸多边形。
补充资料:函数逼近,正定理和逆定理
函数逼近,正定理和逆定理
approximation of functions, direct and inverse theorems
函数逼近,正定理和逆定理〔叩p川心m丽皿of加n比拙,山比Ct and inve瑰the.陀ms;.聊痴叫的日.此中加.欲浦、娜旧M“el.倾阵I‘eT印碑袖I」 描述被逼近函数的差分微分性质与各种方法产生的逼近误差量(及其特征)之间关系的定理和不等式.正定理借助于函数f的光滑性质(具有给定的各阶导数,f或其某些导数的连续模等),给出f的逼近误差估计.利用多项式进行最佳逼近时,Jaekson型定理及其多种推广均是众所周知的正定理,见J以滋s佣不等式(J ackson inequality)和Ja改涨扣定理(Jackson theo-化m).逆定理则是根据最佳逼近或任何其他类型逼近的误差趋于零的速度来刻画函数的微分差分性质.5.N.Bernste几首次提出并在某些场合下解决了函数逼近中的逆定理问题,见[21,比较正逆定理,有时就可以利用,例如,最佳逼近序列来完全刻画具有某种光滑性质的函数类. 周期情形下正逆定理之间的关系最为明显.令C为整个实轴上周期为2二的连续函数空间,其范数定义为}}训:m。‘加川. 趁、 石(户7丁),nf}{厂甲1}、 价任了。为至多。次的允多项J处J’‘“间l对矛中函数f的最不}遍近,。仃一川记二厂的连续模,产r(产一12一)是若;,,I率个实轴上·次连续。f微的函数集‘户,二矛);卜定理f山。‘c、,the(〕re,1”J片出如果.了。厂、则 M{_‘l 从“,,蕊奋一“甲’、万 月l、2、、厂幼,!_.少川1常数M,。。一。又.「JJ以构造矛。‘;矛中函数八,)相关的多项式序列织(_人t):不使得对产三乙,(l)的右端.叮作为误差卜厂一仁〔户一的}界,这是较(I)更强的结果.1兰定理(,n、。r、。the‘)rem)指日:对,。矛勿J果 可。,、M了岁E“,;;),。、二 月二】(其,「,阿是绝对常数l}了司是l厂户的整数部分)日一对某个i「一整数r‘级数 艺。r一’E以讯一1) 月二1收敛.则可推得了‘〔’‘类似戈2)田(/、),l/。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条