1) pre-topological space
预拓扑空间
1.
Lower-level separation axioms in pre-topological spaces
预拓扑空间中的低阶分离公理
2.
Categorical properties of pre-topological spaces with some separations
具有分离性的预拓扑空间的范畴性质
2) sum of L-pretopological spaces
和L-预拓扑空间
3) L-pretopological Space
L-预拓扑空间
1.
Local connectedness of L-pretopological spaces;
L-预拓扑空间的局部连通性
2.
A calculus problem is generalized to three theorems in L-pretopological spaces using the method of generalization,and exposed this progress detailedly.
借助于一般化方法,将一道微积分题推广为L-预拓扑空间中的三个定理,并详细揭示了一般化的步骤,对高校的数学教育工作有一定的启发意义。
4) L-precotopological space
L-预余拓扑空间
1.
An L—precotopological space differs from an L—cotopological space (the latter is a particular example of L-precotopological space), and its conception is more extensive and it also has good nature.
L-预余拓扑空间以L-余拓扑空间为特例但又不同于L-余拓扑空间,其范围更广且具有良好的性质。
5) topological spaces
拓扑空间
1.
Fractal dimensions of polyferric chloride-humic acid(PFC-HA) flocs in different topological spaces;
聚合氯化铁-腐殖酸(PFC-HA)絮体的不同拓扑空间下分形维数的研究
2.
A semigroup of closed selfmaps of a kind of topological spaces;
一类拓扑空间的闭自映射半群
3.
The physical properties and fractal dimensions within different topological spaces of the mature granular sludge in an anaerobic baffled reactor (ABR) were investigated.
研究了ABR反应器启动成功后成熟颗粒污泥的物理性质和不同拓扑空间下的分形维数。
6) topological space
拓扑空间
1.
Seven definitions of topological space and their sameness;
拓扑空间的七个定义及其等价性
2.
Some Browder type fixed point theorems in topological spaces with applications;
拓扑空间中的Browder型不动点定理及应用
3.
Some properties of the relative topological space;
相对拓扑空间的一些性质
补充资料:不可约拓扑空间
不可约拓扑空间
irreducible topological space
不可约拓扑空间【沂曰州bleto州哈口I明ce;HenP“BO-皿Moe功no加r“tlecICOe nPocTP,cTBOI 不能表作两个真闭子集之并集的拓扑空间(topolo-百以lspace).不可约拓扑空间也可以等价地定义为:它的任意开子集都是连通的或任意非空开子集都是处处稠密的.不可约拓扑空间在连续映射下的象是不可约的.不可约拓扑空间之积是不可约的.不可约拓扑空间的概念仅对不可分离空间有意义;它常用于涉及非分离的2汤‘目d拓扑(z五riski topofogy)的代数几何学. 拓扑空间X的不可约分支(irn习ueible comP0nent)是X的任一极大不可约子集.不可约分支是闭的,它们的并集就是整个X.B.H.八aHHJIoB撰【补注】在覆盖理论(见菠盖(集合的)(coVe功19(ofset)))中还有不可约性的概念:一个拓扑空间是不可约的,如果它的每个开覆盖都有不可约的开加细;一个覆盖是不可约的(谊曰ueible),如果它的真子族都不是覆盖.可数紧空间(cou幻tablv .CompactsP暇)由条件“每个不可约开覆盖都是有限的”来刻画.于是,一个空间是紧的,当且仅当它是可数紧且不可约的.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条