1) complex multiplication method
复乘方法
2) complex multiplication (CM)
复乘(CM)方法
3) Complex Multiplication Algorithm
复乘算法
4) Complex multiplication
复数乘法
5) complex multiplication technique
复乘法
1.
This paper introduces the standards and methods which search the secure elliptic curve arced,expatiates complex multiplication technique searching secure elliptic curve,and researches the method and technique of fast constructing secure elliptic curve using complex multiplication technique in binary finite fields.
文中详细介绍了安全椭圆曲线的标准及各种构造方法,其中详细阐述了利用复乘法构造安全椭圆曲线,并探讨了利用此法快速构造特征2有限域上安全椭圆曲线的方法和技巧。
6) multiplier method
乘子方法
1.
Then, by virtue of frequency domain multiplier method, we prove that the closed loop system with both a locally distributed feedback con.
进而利用频域分片乘子方法,在所论梁系统同时具有分布反馈控制和边界反馈控制的条件下,证明其相应的闭环系统能量指数稳定。
2.
Then, by virtue of frequency domain multiplier method, it is proved that the closed loop system is exponentially stable.
首先利用有界C0-半群渐近稳定性判据,证明了闭环系统是渐近稳定的,然后用频域乘子方法证明了闭环系统也是指数稳定的。
3.
This is a hybrid method of multiplier method and quasi-Newton method.
为了保证全局收敛性,我们在迭代过程中插入了乘子方法。
补充资料:弹性力学复变函数方法
用复变函数求解弹性力学问题的方法,主要用于求解平面问题。
在弹性力学平面问题中,基本方程是双调和方程,即ΔΔφ=0,式中Δ为拉普拉斯微分算符,φ是艾里应力函数(见应力函数和位移函数)。将双调和方程表示为复变函数形式,即,式中z=x+iy为复变量;墫为z的共轭,此方程的通解为:
φ=Re[墫ψ(z)+χ(z)],式中ψ(z)、χ(z)为任意解析复变函数;Re表示复变函数实部。所以弹性力学平面问题就归结为求解两个满足用复数表示的弹性力学边界条件的复变函数ψ(z)和χ(z)。对于各向同性材料,平面问题的应力位移与ψ(z)、χ(z)的关系为:
式中σx、σy、τxy为应力分量;i=刧;u、v为位移分量;G为剪切模量(见材料的力学性能);函数上的横线表示复共轭;K为常数。对平面应变问题,K=3-4ν;对平面应力问题,,式中ν为泊松比。
同弹性力学中的实函数方法相比,复变函数方法有如下优点:①实函数解法常常是针对特殊问题寻求一种特殊的应力函数,而复变函数方法具有一般性;②对于多连通域的弹性平面问题,用实函数求解十分困难,而用复变函数方法可以获得一些问题的解析解;③对于位移边值问题及位移和力的混合边值问题,用复变函数方法比用实函数方法容易求解;④可利用保角变换和柯西型积分求出许多边界形状复杂问题的解析解。
用复变函数表示双调和函数是法国的┵.J.B.古尔萨在1898年首先提出的。俄国的Г.В.科洛索夫在1909年将复变函数应用于弹性力学的平面问题。苏联的Н.И.穆斯赫利什维利曾对更为一般的弹性力学平面边值问题进行严格的论证,并建立了完整的弹性力学复变函数方法。他在1933年发表的《数学弹性力学的几个基本问题》一书中发展了平面弹性理论的一般解法,该书获得了很高的评价。20世纪50年代前后,苏联的Г.Н.萨温利用复变函数方法解决了大量的应力集中问题。60年代以后,复变函数方法在线弹性断裂力学中得到广泛的应用和发展,但在解决三维弹性力学问题方面,还存在一定的困难。
在弹性力学平面问题中,基本方程是双调和方程,即ΔΔφ=0,式中Δ为拉普拉斯微分算符,φ是艾里应力函数(见应力函数和位移函数)。将双调和方程表示为复变函数形式,即,式中z=x+iy为复变量;墫为z的共轭,此方程的通解为:
φ=Re[墫ψ(z)+χ(z)],式中ψ(z)、χ(z)为任意解析复变函数;Re表示复变函数实部。所以弹性力学平面问题就归结为求解两个满足用复数表示的弹性力学边界条件的复变函数ψ(z)和χ(z)。对于各向同性材料,平面问题的应力位移与ψ(z)、χ(z)的关系为:
式中σx、σy、τxy为应力分量;i=刧;u、v为位移分量;G为剪切模量(见材料的力学性能);函数上的横线表示复共轭;K为常数。对平面应变问题,K=3-4ν;对平面应力问题,,式中ν为泊松比。
同弹性力学中的实函数方法相比,复变函数方法有如下优点:①实函数解法常常是针对特殊问题寻求一种特殊的应力函数,而复变函数方法具有一般性;②对于多连通域的弹性平面问题,用实函数求解十分困难,而用复变函数方法可以获得一些问题的解析解;③对于位移边值问题及位移和力的混合边值问题,用复变函数方法比用实函数方法容易求解;④可利用保角变换和柯西型积分求出许多边界形状复杂问题的解析解。
用复变函数表示双调和函数是法国的┵.J.B.古尔萨在1898年首先提出的。俄国的Г.В.科洛索夫在1909年将复变函数应用于弹性力学的平面问题。苏联的Н.И.穆斯赫利什维利曾对更为一般的弹性力学平面边值问题进行严格的论证,并建立了完整的弹性力学复变函数方法。他在1933年发表的《数学弹性力学的几个基本问题》一书中发展了平面弹性理论的一般解法,该书获得了很高的评价。20世纪50年代前后,苏联的Г.Н.萨温利用复变函数方法解决了大量的应力集中问题。60年代以后,复变函数方法在线弹性断裂力学中得到广泛的应用和发展,但在解决三维弹性力学问题方面,还存在一定的困难。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条