说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义Riordan阵
1)  generalized Riordan array
广义Riordan阵
2)  Riordan array
Riordan阵
1.
Bijections and the methods of generating trees together with those of Riordan arrays are used to enumerate these subsets, resulting in many combinatorial structures counted by such well-known sequences as the Catalan nos.
利用双射、生成树以及Riordan阵的方法来对集合Dm的一些子集进行计数,得到了一些以经典的序列如Catalan数、Narayana数、Motzkin数、Fibonacci数、Schroder数以及第一类无符号Stirling数来计数的组合结构。
2.
Based on the theory of the Riordan array and the (exponential) partial Bell polynomials, this paper gets some properties of the generalized Cauchy numbers and a few important identities which include special combinatorial numbers.
本文运用Riordan阵理论,结合指数型部分Bell多项式,得到了广义Cauchy数的诸多性质及若干包含众多特殊组合数的恒等式。
3.
In 1991, Rogers proposed Riordan arrays D = ( d ( n, k )) = ( d (t ), h (t )), where d ( n, k ) = [t~n ]d (t )(t h (t ))~k.
1991年Rogers提出了Riordan阵D = ( d ( n, k )) = ( d (t ), h (t )),其中d ( n, k ) = [t~n ]d (t )(t h (t ))~k,发现Riordan阵是一个寻找和证明组合恒等式的重要方法。
3)  Riordan array/Hsu-Riordan array
Riordan阵/徐-Riordan阵
4)  Riordan matrix
Riordan矩阵
1.
We generalize the Riordan matrix to the weighted Riordan matrix,which is not necessary to be triangular.
把Riordan矩阵推广到加权Riordan矩阵,它不必为三角阵,文中考察了加权Riordan矩阵的定义与生成,给出了若干例子。
2.
This article mainly dicusses Riordan matrix.
讨论了Riordan矩阵运用,获得第二类Stirling数和Bell多项式恒等式,并给出了其应用实例。
5)  weighted Riordan matrix
加权Riordan矩阵
1.
We generalize the Riordan matrix to the weighted Riordan matrix,which is not necessary to be triangular.
把Riordan矩阵推广到加权Riordan矩阵,它不必为三角阵,文中考察了加权Riordan矩阵的定义与生成,给出了若干例子。
6)  greedoid
广义拟阵
1.
Closure axioms for poset greedoids;
偏序集广义拟阵的闭包公理
2.
Relations between poset matroids and greedoids;
偏序集拟阵与广义拟阵的关系
3.
The concepts of strong map between matroids and an automorphism of a matroid are first extended to that of greedoids,and then followed by presenting some decision theorems for strong maps of greedoids and two methods of finding the strong maps of a greedoid concretely.
将拟阵间有关强映射和自同构的概念推广到广义拟阵上。
补充资料:广义
范围较宽的定义(跟‘狭义’相对):~的杂文也可以包括小品文在内。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条