说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 功率分解
1)  power decomposition
功率分解
2)  Spectral decomposition technique
功率谱分解技术
3)  resolution of power spcetral matrix
功率谱矩阵分解
4)  power decoupling
功率解耦
5)  Instantaneous power decomposition technique(IPDT)
瞬时功率分解技术
6)  functional decomposition
功能分解
1.
Two new functional decomposition methods, original-decomposition based on function and re-decomposition on existing mechanisms were approved.
提出了基于总功能的原创性分解和基于现有机构的功能再分解两种新的功能分解方式。
2.
Its methodology consists of functional decomposition and the integration of analysis and totality.
其方法的核心是功能分解及分析性与整体性相结合。
3.
Using the method of functional decomposition to research the.
采用用户面谈法获取用户需求,采用近似图表法进行用户需求分析,提取用户群体重要度,利用功能分解法研究从用户需求到设计需求的转换,通过搜索设计需求的解决方案建立众多产品概念,生成概念选择树,并以投票数据确定深入发展更具潜力的设计概念,最后以用户需求检验设计概念的正确性。
补充资料:功率谱密度估计
      随机信号的功率谱密度用来描述信号的能量特征随频率的变化关系。功率谱密度简称为功率谱,是自相关函数的傅里叶变换。对功率谱密度的估计又称功率谱估计。平稳随机信号x(t)的(自)功率谱Sxx(ω)定义为
  
  
  (1)
  式中rxx(τ)为平稳随机信号的自相关函数。
  
  对于离散情况,功率谱表示为
  
  
  (2)
  式中T为离散随机信号的抽样间隔时间。
  
  当利用随机信号的 N个抽样值来计算其自相关估值时,即可得到功率谱估计为
   (3)
  可见,随机信号的功率谱与自相关函数互为傅里叶变换的关系,这两个函数分别从频率域和时间域来表征随机信号的基本特征。按上式计算功率谱估值,其运算量往往很大,通常采用快速傅里叶变换算法,以减少运算次数。
  
  计算信号功率谱的方法可以分为两类:一为线性估计方法,有自相关估计、自协方差法及周期图法等。另一类为非线性估计方法,有最大似然法、最大熵法等。线性估计方法是有偏的谱估计方法,谱分辨率随数据长度的增加而提高。非线性估计方法大多是无偏的谱估计方法,可以获得高的谱分辨率。
  
  

参考书目
   何振亚:《数字信号处理的理论与应用》,人民邮电出版社,北京,1983。
   A. V. Oppenheim, R. W. Schafer, Digital Signal Processing Prentice-Hall, Inc., Englewood Cliffs,New Jersey,1975.
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条