1) prey–predator
食饵–捕食者
2) predator-prey
捕食者-食饵
1.
In this paper,the global existence,uniqueness and uniform boundary of positive solutions to a predator-prey reaction-diffusion system are proved under homogeneous Neumann boundary condition.
讨论一类具有空间扩散的捕食者-食饵模型在齐次Neumann边界条件下解的存在唯一性和一致有界性,并由线性化方法和Lyapunov函数方法分别证明了该模型正平衡点的局部和全局渐近稳定。
2.
In order to study the uniform persistence and global stability of a delayed nonautonomous three specie predator-prey Lotka-Volterra system without dominating instantaneous negative feedback.
为了研究一类没有即时负反馈控制的3种群捕食者-食饵系统的持续性和全局稳定性;在给定的条件下,利用不等式知识,证明了系统的一致持续性。
3.
In this paper,we consider Leslie predator-prey models with competition,stage structure and food chain.
本文主要考虑了具有竞争,阶段结构,食物链的Leslie型捕食者-食饵模型。
3) prey-predator model
食饵-捕食者
1.
The qualitative analysis of two species prey-predator model;
一类两种群食饵-捕食者模型的定性分析
4) prey-predator
食饵-捕食者
1.
Analysis of a Prey-predator System with Beddington-DeAngelis Functional Response and Harvesting
一类带有Beddington-DeAngelis反应和收获时滞的食饵-捕食者系统的分析
2.
The impulsive control of the system of two species of prey-predators with sparse effect was studied.
讨论一类具稀疏效应的两种群食饵-捕食者系统的脉冲控制问题,应用脉冲微分方程稳定性理论给出了系统在脉冲控制下稳定的充分条件,并给出了脉冲控制时间间隔的估计。
5) predator-prey
食饵-捕食者
1.
A kind of predator-prey system of HollingⅡ-functional response with nonlinear density dependent x′=xg(x)-yφ(x),y′=y(-d+kφ(x)) is considered.
研究一类具有非线性密度制约的HollingⅡ型功能性反应的食饵-捕食者系统:x′=xg(x)-yφ(x),y′=y(-d+kφ(x))在g(x)=a-b x的情况下。
6) predator-prey
食饵捕食者
1.
In this paper, we study the qualitative behavior of a predator-prey system with Holling type I functional response and predator densities.
研究了具有Holling第Ⅰ类功能反应且捕食者为密度非助长的食饵捕食者模型的定性行为。
补充资料:食饵
1.吃糕饼。 2.捕捉鱼虾等时用来引诱的食物。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条