说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 可数层仿紧
1)  countable sheaf paracompactness
可数层仿紧
1.
By the base of almost countable F-compactness,sheaf paracompact hess and countable paracompactness in L-Fuzzy topological space,in this artical,counta ble sheaf paracompactness,almost countable paracompactness and almost countable sheaf paracompactness are investigated.
本文以L—Fuzzy拓扑空间中的几乎可数F紧性、层仿紧性以及可数仿紧性为基础,研究了L—Fuzzy拓扑空间中的可数层仿紧性、几乎可数仿紧性以及几乎可数层仿紧性。
2)  almost countable sheaf paracompactn
几乎可数层仿紧
1.
By the base of almost countable F-compactness,sheaf paracompact hess and countable paracompactness in L-Fuzzy topological space,in this artical,counta ble sheaf paracompactness,almost countable paracompactness and almost countable sheaf paracompactness are investigated.
本文以L—Fuzzy拓扑空间中的几乎可数F紧性、层仿紧性以及可数仿紧性为基础,研究了L—Fuzzy拓扑空间中的可数层仿紧性、几乎可数仿紧性以及几乎可数层仿紧性。
3)  countably paracompact
可数仿紧
1.
The present article proves the following results:(1) if X=∏α∈ΛXα is |Λ|-para-closed spaces,then X is meso para-compact if and only if F∈[Λ]<ω,∏α∈FXαis countably paracompact;(2) if X=∏i∈ωXi is countably paracompact,then the following three conditions is equal in value;X is meso compact;F∈[Λ]<ω,∏α∈FXαis meso compact;n∈ω,∏i<nXi is meso compact.
主要证明了如下结果:(1)如果X=∏α∈ΛXα是|Λ|-仿紧空间,则X是meso紧的当且仅当F∈[Λ]<ω,∏α∈FXα是meso紧的;(2)如果X=∏i∈ωXi是可数仿紧的,则下列三条件等价:X是meso紧的;F∈[Λ]<ω,∏α∈FXα是meso紧的;n∈ω,∏i≤n Xi是meso紧的。
2.
If each Xα is a normal countably paracompact space,then X is a countably paracompact space.
得到了如下结果:设X是逆系统{Xα,παβ,Λ}的逆极限,|Λ|=λ,假设每个映射πα∶X→Xα是开的且到上的,X是λ-仿紧,每个Xα是正规可数仿紧的,则X是正规可数仿紧的。
4)  countable paracompact
可数仿紧
1.
(2) For countable paracompact X=∏i∈ωXi,the followings are equivalent:X is weakly subortho-compact,F∈[ω] <ω,∏i∈FXi is weakly subortho-compact;n∈ω,∏i≤nXi is subortho-compact.
(2)X=Πi∈ωXi是可数仿紧的,则下列三条等价:X是弱subortho-紧的;F∈[ω]<ω,∏i∈F Xi是弱subortho-紧的;n∈ω,Πi≤n Xi是弱subortho-紧的。
2.
This paper mainly proves following: (1) Let X=∏α∈ΛX α be|Λ| - paracompact, X is nearly orthocompact if ∏α∈FX α is nearly orthocompact for every F∈ <ω(2) Let X=∏i∈ω X i be countable paracompact,then the following are equivalent: X is nearly orthocompact for everyF∈ <ω ;F∈ <ω ∏i∈FX i , is nearly orthocompact;n∈ω,∏inX i is nearly orthocompact.
( 1)如果X =∏α∈ΛXα 是 |Λ| -仿紧空间 ,则X具有P当且仅当 F∈ [Λ]<ω,∏α∈FXα 具有P ;( 2 )如果X =∏i∈ωXi 是可数仿紧的 ,则下列三条等价 :X具有P : F∈ [ω]<ω,∏i∈FXi具有P : n <ω ,∏i≤nXi,具有P 。
5)  Countable paracompactness
可数仿紧性
6)  base-countably paracompact space
基-可数仿紧
1.
This paper is made of two parts: one part is the Tychonoff infinite product properties of σ-ortho compact space; the other part,a series of properties of base-countably paracompact spaces are given.
主要研究了两部分内容:一是σ-ortho紧空间的Tychonoff乘积性;二是给出了基-可数仿紧空间的一系列性质;着重证明了:如果X=∏σ∈∑Xσ是|∑|-仿紧空间,则X是σ-ortho紧空间当且仅当F∈|∑|〈ω,∏σ∈FXσ是σ-ortho紧空间。
补充资料:几乎
①将近于;接近于:今天到会的~有五千人。②差点儿 ②:不是你提醒我,我~忘了ㄧ两条腿一软,~摔倒。也说几几乎。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条