1) MMOCAA-Galerkin proce-dure
MMOCAA-Galerkin方法
2) MMOCAA difference method
MMOCAA差分方法
1.
83: 353-369)" difference method with ENO, the ENO-MMOCAA difference method is proposed for covection-diffusion equation in the paper.
83:353-369)”差分方法相结合,提出了求解对流扩散方程的ENO-MMOCAA差分方法,避免了原来基于高阶Langrange插值的MMOCAA差分方法在解的陡峭前缘附近产生的震荡。
3) Galerkin method
Galerkin方法
1.
Nonlinear Galerkin methods for dissipative equations;
耗散型方程的非线性Galerkin方法
2.
The variable and algebraic equations for finite element solution were formulated via Galerkin method, and iteration steps for final pressure velocity solutions were presented.
用Galerkin方法建立了有限元求解的变分方程和代数方程,给出了迭代求解步骤;采用隐式格式及“上风”法离散能量方程、求解温度场,开发了模拟程序。
3.
The existence of a time-periodic solution is proved by using the Galerkin method and the Leray-Schauder fixed point theorem.
本文对一类含扩散项和非齐次项的凝血系统,应用Galerkin方法和Leray-Schauder不动点定理证明了时间周期解的存在性。
6) the Galerkin method
Galerkin方法
1.
According to the Galerkin method,the control equation of rectangular thin plane of four sides free on the Winkler foundation with harmonic excitation is translated into nonlinear vibration equation.
通过Galerkin方法,将W inkler地基上四边自由受横向简谐激励矩形薄板的控制微分方程转化为非线性振动方程。
2.
According to the Galerkin method, the control equation of rectangular thin plates with four sides free on the Winkler foundation under harmonic excitation is translated into nonlinear vibration equations.
通过Galerkin方法,将Winkler地基上四边自由受横向简谐激励矩形薄板的控制微分方程转化为非线性振动方程。
3.
Our four main results are stated as follows:1 By using the Galerkin method and constructing stable setaccording to the potential well theory, It is proved:Theorem (existence): Let .
所得的四个主要结果如下: 1、运用Galerkin方法结合势井理论构造稳定集证明了: 定理(存在性):设则问题(0。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条