1) Hilbert cube Q
Hilbert方体Q
1.
thereexists a homeomorphism H:↓USC_F(X)→Q such that H(↓C_F(X))=c_0, wherec_0={(x_n)∈Q|(?)=0} is a subspace of the Hilbert cube Q=[0,1]~w.
本文的主要结论:如果X是一个局部紧的可分可度量化无限空间且它的孤立点集在X中不稠密,则(↓USC_F(X),↓C_F(X))≈(Q,c_0),即存在一个同胚H:↓USC_F(X)→Q满足H(↓C_F(X))=c_0,其中c_0={(x_n)∈Q|(?)=0}是Hilbert方体Q=[0,1]~w的子空间。
2) Hilbert cube
Hilbert方体
1.
It is showed that ↓USC(X) is homeomorphic to the Hilbert cube Q=[-1,1]ω if and only if X is infinite locally compact second countable.
利用Torunczyk刻画定理研究了带有Fell拓扑的空间↓USC(X)的拓扑结构,证明了↓USC(X)同胚于Hilbert方体Q=[-1,1]ω当且仅当X为无限的局部紧第二可数空间。
2.
Based on the thought that the family of all the continuous functions from an infinite,locally connected compact,metrizable space X to Hilbert cube Q=ω is regarded as a subspace of the hyperspace CldX×Q of closed subsets to the product space X×Q,we discuss the topological structures of C(X,Q) and its closure C(X,Q) in CldX×Q,moreover,we have(C(X,Q),C(X,Q))≈(Q,s).
基于无穷局部连通的紧致度量空间X到Hilbert方体Q=[0,1]ω的连续函数族C(X,Q)作为乘积空间X×Q的闭子集组成的超空间Cld(X×Q)的子空间,讨论连续函数超空间C(X,Q)及其在Cld(X×Q)中的闭包C(X,Q)的拓扑结构,得到(C(X,Q),C(X,Q))对同胚于(Q,s)。
3) the Hilbert-Huang method
Hilbert-Huang方法
4) hilbert space method
Hilbert空间方法
1.
Using Hilbert space method,we effectively obtain the existence of solution to the above equation.
本文使用Hilbert空间方法,有效地解决了如上非线形方程解的存在性,并且推广了文[1,2]的结论。
5) Hilbert's axiom system
Hilbert公理体系
6) differential equation in Hilbert space
Hilbert空间微分方程
1.
The local straightness theorem for the ordinary differential equation in Hilbert space was proved and the results were extention of corresponding results for ordinary differential equation.
证明了Hilbert空间微分方程的局部直性定理 ,所得结果是常微分方程相应结果的推
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条