1) Composite Grid Method
组合网格法
1.
Composite Grid Method (CGM) is devloped from existing numerical finite element methods, it is an improved FAC method essentially.
本文讨论的组合网格法(Composite Grid Method,CGM)是在结合已有的有限元数值方法优点的基础上得到的一种新的算法格式,其实质上是一种改进的FAC方法。
2.
The realization of composite grid method(CGM) based on Finite Element Program Generator(FEPG) was discussed in the paper.
讨论组合网格法(Composite Grid Method,CGM)在有限元程序自动生成系统平台(Finite Element Program Generator,FEPG)上的具体实现。
2) composite grid method(CGM)
组合网格法(CGM)
3) composite grid
组合网格
1.
We in this paper present a composite grid method based on the system of finite element program generator(denoted by FEPG)to solve finite element problems with local singularity,which often occurs in engineering and scientific computing.
针对工程计算中经常出现的局部特性(特别是奇性)问题,和以往解决此类问题的算法的局限性,提出一种基于有限元自动生成系统(FEPG)的组合网格算法。
2.
This paper presents a composite grid method to solve contact problem,which often occurs in the hydraulic structure calculation.
针对水工结构工程计算中经常出现的接触问题,和以往解决此类问题算法的局限性,提出了采用组合网格算法。
5) composite table algorithm
组合表格法
6) grid service composition
网格服务组合
1.
In order to describe the grid service composition during grid service mining(GSM),a formulized mo-(del),namely,the GSAM(Grid Service Automata Model) based on I/O automata,is presented.
为了描述网格服务挖掘(GSM)中的网格服务组合,提出了一种基于I/O的网格服务自动机模型GSAM(Grid Service Automata Model)。
2.
Validating the grid service composition is further discussed and a Pi-calculus based grid serv.
利用Pi-演算适于描述动态、分布系统的特点,建立了基于该理论的网格服务交互行为模式、服务上下文等概念及其机理,提出服务组合正确性的定义,并进一步给出基于Pi-演算的网格服务组合正确性验证算法。
补充资料:数论网格求积分法
高维数值积分数论方法研究开始于20世纪50年代末,其理论基础是数论中的一致分布论。命Us表示 s维单位立方体。假定是Us上定义的函数,并假定存在且其绝对值以C为界。命 是Us中具有偏差D(n)的点集。所谓数论方法就是用被积函数在p(k) (1≤k≤n)上值的算术平均作为Us上定积分的近似值,而误差由下面的公式给出:
J(??,p(k))就是由点集p(k)(1≤k≤n)定义的一个求积公式。因此寻求Us上最佳求积公式的问题即等价于寻求Us上最佳偏差的点集的问题。从计算方法的观点看,不仅要求点集p(k)(1≤k≤n)的偏差小,而且要求p(k)的形式简单,易于计算。
① 科罗博夫-劳卡方法 命p表示素数,a=(α1,α2,...,αs)表示整数向量,科罗博夫和E.劳卡证明了,对于任意p,皆存在a,使点集有偏差。也就是说用点集Q(k)(1≤k≤p)构造的求积公式有误差。对于p求出a的计算量为O(p2)次初等运算。因此当p较大时,算出a来很困难。
② 分圆域方法 分圆域是一个次代数数域。利用 的独立单位组可得它的一个适合于
的单位列nl(l=1,2,...),其中表示nl的共轭数。如果使则得点集
用这一点集构造的求积公式的误差为
式中ε为任意正数。算出nl、hjl(1≤j≤s-1)的计算量为O(lognl)。因此算出nl和没有困难,但缺点是误差略为偏大些。
当2≤s≤18时,上述的p、a、nl和h都已汇编成表,可供查阅。
数论方法得到的求积公式的误差主阶均与维数无关,所以当s较大时,用数论方法近似计算Us上的定积分比较合算。
参考书目
华罗庚、王元著:《数论在近似分析中的应用》,科学出版社,北京,1978。
J(??,p(k))就是由点集p(k)(1≤k≤n)定义的一个求积公式。因此寻求Us上最佳求积公式的问题即等价于寻求Us上最佳偏差的点集的问题。从计算方法的观点看,不仅要求点集p(k)(1≤k≤n)的偏差小,而且要求p(k)的形式简单,易于计算。
① 科罗博夫-劳卡方法 命p表示素数,a=(α1,α2,...,αs)表示整数向量,科罗博夫和E.劳卡证明了,对于任意p,皆存在a,使点集有偏差。也就是说用点集Q(k)(1≤k≤p)构造的求积公式有误差。对于p求出a的计算量为O(p2)次初等运算。因此当p较大时,算出a来很困难。
② 分圆域方法 分圆域是一个次代数数域。利用 的独立单位组可得它的一个适合于
的单位列nl(l=1,2,...),其中表示nl的共轭数。如果使则得点集
用这一点集构造的求积公式的误差为
式中ε为任意正数。算出nl、hjl(1≤j≤s-1)的计算量为O(lognl)。因此算出nl和没有困难,但缺点是误差略为偏大些。
当2≤s≤18时,上述的p、a、nl和h都已汇编成表,可供查阅。
数论方法得到的求积公式的误差主阶均与维数无关,所以当s较大时,用数论方法近似计算Us上的定积分比较合算。
参考书目
华罗庚、王元著:《数论在近似分析中的应用》,科学出版社,北京,1978。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条