1) pre-magnification Fresnel digital holography
预放大菲涅耳数字全息
2) Fresnel digital holography
菲涅尔数字全息
1.
Image encryption method based on Arnold transform and Fresnel digital holography,wavelet transform and Fresnel digital holography is proposed.
研究基于Arnold变换和菲涅尔数字全息,小波变换和菲涅尔数字全息的图像加密方法。
3) Fresnel hologram
菲涅耳全息
1.
Both theoretic analysis and computer simulation show that these expressions gained from this article about off-axis Fresnel hologram are correct and rigorous,but others p.
根据全息理论,通过分析全息图光栅结构的极值频率,利用抽样定理以及频谱分离条件,分析了离轴菲涅耳全息的记录条件,得到了不同于以往文献的最小记录距离及参考光源设置表达式,并做了计算机模拟验证。
2.
A digital reconstruction method of Fresnel hologram with a ridge of Gabor wavelet transform is described.
提出了一种基于Gabor小波变换的菲涅耳全息图的数值再现方法,实现无需空间滤波处理,即可对物光波进行数值再现。
4) Fresnel hologram
菲涅耳全息图
1.
Microimaging of the Fresnel hologram;
菲涅耳全息图的显微成像
2.
The blind digital watermarking algorithm with positive real values is proposed based on optical Fresnel hologram,phase encryption mask (PEM) and DCT (Discrete-Cosine-Transform).
基于光学菲涅耳全息图和相位密码板,结合离散余弦变换,设计了一种新的正实值编码的"盲数字水印"计算方法。
3.
These three algorithms are applied in digital reconstruction program for Fresnel holograms.
基于标量衍射理论和快速傅利叶变换,详细分析了菲涅耳衍射积分的三种计算机模拟算法,并将这三种算法运用到菲涅耳全息图的数字过程中。
5) in-line Fresnel holography
同轴菲涅耳全息
6) Off-axis Fresnel holography
离轴菲涅耳全息
补充资料:菲涅耳衍射
菲涅耳衍射 Fresnel diffraction 光源和观察屏离障碍物(孔或屏)为有限远时的衍射 。以单色点光源照射圆孔,在有限远处设置观察屏,在屏上将观察不到圆孔的清晰几何影,而是一组明暗交替的同心圆环状衍射条纹。以不透光的圆屏代替圆孔,在原几何影中心可观察到亮点,外围与圆孔衍射一样是明暗交替的圆环条纹 。以上是菲涅耳衍射的典型例子。根据惠更斯-菲涅耳原理计算菲涅耳衍射的强度分布时,必须对波前作无限分割,然后用积分求次波的合振幅,计算比较复杂。在处理圆孔或圆屏衍射时常用菲涅耳半波带法,它是用较粗糙的分割来代替对波前的无限分割,相应地,次波叠加时的积分可简化成多项式求和。此法虽然不够精确,但可较方便地得出菲涅耳衍射的主要特征。 菲涅耳圆孔衍射 如图1,S是波长为λ的点光源,P为观察点。考虑半径为R的球面波前Σ,它与SP交于O点。以观察点P为中心,依次以 b+λ/2,b+λ,b+3λ/2,b+2λ,……为半径作一系列球面,把Σ分割成许多以O为心的圆环带。每个环带看成是发射次波的一个单元,相邻两环带所发次波到达P点的光程差(见光程)均为λ/2(对应相位差为π),故每个环带称为半波带。从中心O算起,设第k个半波带在P点引起的振幅为ak,则有akαFΔSk/rk ,式中ΔSk为第k个波带的面积,rk为它到P点的距离,F为该波带处的倾斜因子。从几何上可证ΔSk/rk近似为常数,故ak仅由倾斜因子决定,按菲涅耳的假设,有a1 >a2>a3>…。故P点的合振幅为A=a1-a2+a3-a4 +……
若在波前Σ处放置一带圆孔的无穷大不透光屏,圆孔中心在连线SP上,则P点的合振幅A就由未被遮挡的半波带数决定,A等于有限项之和,其大小由露出的半波带数的奇偶性决定。半波带的划分与观察点P的位置有关,当P点沿轴线移动时,露出的半波带数的奇偶性将交替变化,P点的强度也作明暗交替变化。当观察点向轴外移动时,露出的半波带不断变化,强度也相应地作明暗交替变化,于是形成圆环条纹。 菲涅耳圆屏衍射 以不透光的圆屏代替圆孔(图2),中央部分的半波带将被挡住,设正好挡掉k个半波带,则P点振幅为: A=ak+1-ak+2+ak+3-……+a∞=ak+1/2 得圆屏衍射图样的中心点为亮点,周围与圆孔衍射一样是明暗交替的同心圆环条纹。1818年,A.-J.菲涅耳参加了法国科学院主办的一次征文竞赛,发表了关于衍射理论的论文。评审委员会成员之一的S.D.泊松反对光的波动说,他仔细审核了菲涅耳的理论,得出圆屏几何影中心应为亮点的结论(故称泊松亮点),他利用这一当时看来与日常经验相违背的结论对菲涅耳的理论提出异议。但过后不久,D.F.J.阿拉戈在实验中果真发现了几何影中心为亮斑(故又称阿拉戈斑)。这成为菲涅耳的衍射理论和光的波动说取得决定性胜利的标志。
菲涅耳波带片 对特定的观察点可设计一种特殊的遮光屏,把所有奇数或偶数的半波带遮掉,则观察点将是强度大大增强的亮点,如同光源的像点一样,这种特殊遮光屏称为菲涅耳波带片,它与透镜一样具有成像性质,其焦距为 ,ρ1为第一个半波带的半径 ,λ为波长。与透镜不同的是,除上述主焦距外,还有f/3,f/5,f/7,…等次焦距。波带片除有会聚性质外,还有发散性质,即存在-f,-f/3,-f/5,…等一系列虚焦距 。现代波带片的种类很多,除上述振幅型的外,还有相位型;透射率有矩形函数,也有正弦函数;有用于可见光波段,也有用于微波波段,等等。 |
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条