说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 轴向输出相对论磁控管
1)  relativistic magnetron with diffraction output
轴向输出相对论磁控管
1.
In recent years, the relativistic magnetron with diffraction output (MDO) has been studied rapidly.
最近几年,轴向输出相对论磁控管(MDO)得到了较多的研究。
2)  relativistic magnetron
相对论磁控管
1.
Large current,under which a relativistic magnetron is operated,results in an azimuthal magnetic field which gives the electrons a force and make electrons escape from the interaction space before energy of the electrons is converted to rf energy sufficiently.
相对论磁控管(RM)的工作电流较大的时候,工作电流所产生的角向磁场将对电子产生一个轴向的漂移力,使得电子在产生高功率微波之前就漂移出谐振腔,导致RM的整体效率下降。
2.
The dispersion relation of a conventional 6-vane relativistic magnetron is derived and numerically calculated, which is employed to analyze the operating frequency of the device.
利用场论的方法推导了6腔扇形腔结构相对论磁控管的色散关系,并用牛顿迭代法对色散关系进行了求解,得到了色散关系曲线。
3.
What causes relativistic magnetron to have much lower efficiency than common magnetron? Based on the residual energy of electron stream at the anode,different factors affecting the relativistic magnetron s efficiency,including synchronous velocity,gyral movement,depth of Brillouin flow,Lamour radius,DC space charge field and RF field,were analyzed.
相对论磁控管与普通磁控管效率形成了极大的反差。
3)  coaxial relativistic baorward-wave oscillator
同轴相对论返波管
1.
Effects of slows wave structure parameters on linear growth rate of coaxial relativistic baorward-wave oscillator
慢波结构参数对同轴相对论返波管线性增长率的影响
4)  output shaft end play
输出轴轴向间隙
5)  photo-output
相对光输出
1.
The technique of calibrating relative photo-output curve of scintillator detector;
闪烁探测器中子相对光输出曲线标定技术
6)  relative output value
相对输出量
补充资料:磁控管
      用以产生大功率微波振荡的微波电子管。在磁控管中,电子运动方向、径向直流电场和轴向恒定磁场三者相互垂直,因而它又属于正交场器件。
  
  早期的磁控管(负阻磁控管和回旋磁控管)由于效率极低,没有实用意义。第一只多腔磁控管是苏联工程师Н.Ф.阿列克谢也夫和Д.Е.马辽逻夫于1936~1937年间制成的。1939年,英国物理学家H.A.H.布特和J.T.兰道尔也制成了多腔磁控管。在第二次世界大战中,多腔磁控管广泛用于军用雷达发射机,发挥了很大的作用。到1945年,其工作频率已达30吉赫。一般所称的磁控管,即指多腔磁控管。
  
  磁控管的特点是功率大、效率高、工作电压低、尺寸小、重量轻、成本低。磁控管主要由阴极、阳极、能量耦合装置、磁路和调谐装置等五个部件构成(图1)。固定频率的磁控管中不设调谐装置。
  
  
  工作原理  磁控管通常工作在π 模,相邻两个谐振腔腔口处微波电场相位正好相差180°,即微波电场方向正好相反(图2)。虽然这种微波场为驻波场,但在π模的情况下,相当于两个相同的微波场在圆周上沿相反的方向运动,两个场的相速值相等。从阴极发射出的电子在正交电磁场作用下作轮摆线运动。调节直流电压和恒定磁场,使电子在圆周方向的平均漂移速度v=E/B正好等于在其方向上运动的一个微波场的相速v(式中E是直流电压在互作用空间产生的直流电场平均值,B为轴向恒定磁感应强度),电子就可以与微波场作同步运动。在同步运动过程中,处在微波减速场中的那部分电子将自己的直流位能逐渐交给微波场,并向阳极靠拢,最后为阳极所收集。这部分电子向微波场转移能量,有利于在磁控管中建立稳定的微波振荡,故称为有利电子。处在微波加速场的那部分电子从微波场获得能量并向阴极运动,最后打在阴极上。这部分电子称为不利电子。不利电子在回轰阴极时打出大量的次级电子,使互作用空间电子的数量因之增加。最大减速场区是电子的群聚中心。在它两旁的电子都受到向这个群聚中心靠拢的力而向群聚中心运动。最大加速场区是电子的散聚中心,附近的电子都受到背离散聚中心的力,分别向左右两边运动,转化为有利电子。这样,在振荡建立过程中不利电子越来越少,有利电子越来越多,并向群聚中心集中,逐步在互作用空间形成轮辐状电子云。这种处于不同相位下的电子在互作用空间自动群聚成轮辐状电子云的现象,称为自动相位聚焦。在互作用空间的微波场,随着远离阳极表面而指数衰减。因此,在阴极表面的微波场极弱,对电子的群聚作用极小,在阴极附近不会形成明显的电子轮辐,而是形成几乎均匀分布的电子轮毂。
  
  
  在互作用空间的电子中有利电子占绝大多数,而且均在向阳极运动过程中,有利电子回旋的时间又较长,它们能够充分地将直流位能轮换成微波能量;回轰阴极的电子比较少,而且它们从阴极发射后不久就打在阴极上,因而从微波场吸收能量也较少。这样,互作用空间全部电子与微波场相互作用的总的效果是,电子将直流位能交给微波场,在磁控管中建立起稳定的微波振荡。
  
  阳极谐振系统  阳极谐振系统由沿着圆周排列的一组闭合谐振腔构成。磁控管作为振荡器需有一定的储能,以维持微波振荡,因而要求阳极谐振系统有较高的品质因数。同时,在磁控管中,振荡的能量又需要通过输出装置输出才能使用。因此,阳极谐振系统上的能量耦合元件的设计十分重要。它既要耦合出一定能量保证使用,又要使阳极谐振系统具有较高的品质因数,保持足够高的储能,维持磁控管稳定工作。
  
  磁控管工作于 π模。为保证 π模工作稳定,邻模与π 模之间应有良好的模式分割,因此,常常采用带有隔膜带的或旭日异腔型的阳极谐振系统。图3为常用的磁控管阳极谐振系统的结构。
  
  
  分类和应用  磁控管接工作状态可分为脉冲磁控管和连续波磁控管;按结构特点可分为普通磁控管、同轴磁控管和反同轴磁控管;按频率可调与否,可分为固定频率磁控管和频率可调磁控管。频率可调磁控管又可分为机械调谐磁控管和频率捷变磁控管。另外还有一类借助改变阳极电压实现频率调谐的电压调谐磁控管。
  
  脉冲磁控管的工作脉冲宽度可在 0.004~60微秒范围内变化,工作频率范围在250兆赫至120吉赫之间,脉冲功率从几十瓦到几十兆瓦,效率可达70%,寿命可达几万小时。脉冲磁控管广泛用于引导、火控、测高、机载、舰载、气象等各种雷达中。
  
  连续波磁控管用于电子对抗、工业加热和微波理疗。功率在 400~1000瓦之间的廉价的连续波磁控管还广泛用于家用微波灶。为了不干扰雷达和通信设备的正常工作,医用、工业加热和烹调用磁控管的工作频率通常为915±25兆赫及2450±50兆赫。
  
  频率可调磁控管,特别是频率捷变磁控管能提高雷达的抗干扰能力。
  
  电压调谐磁控管通常作为电子对抗设备的功率源,可提供几瓦到几百瓦的连续波功率。它具有调谐速度快、调谐线性好等优点。小功率电压调谐磁控管调谐范围可达2:1,4:1,甚至20:1,能大大提高各种雷达的电子对抗能力。它的主要缺点是输出功率不够大,不能用于雷达的电子反对抗措施。
  
  同轴磁控管  同轴磁控管是在普通磁控管翼片腔体(称为内腔)外面加一只具有高品质因数的同轴腔(称为外腔)而构成,靠内腔背壁上的相间耦合隙缝将内外腔的场耦合起来(图4)。
  
  
  同轴磁控管具有模式分割好、工作效率高和频率稳定性好的优点,常用于动目标显示、精密跟踪和测距雷达中。反同轴磁控管由内阳极和与之同轴的外阴极组成,因而可增大阴极面积。同轴磁控管的工作波长可短至毫米波段。这种磁控管的特点是功率高、效率高、频率稳定性好。
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条