1) arbitrary even order accuracy
任意偶数阶精度
1.
The structure of the arbitrary even order accuracy difference scheme is the use of Taylor series expansion method in combination with the second-order and fourth-order partial differential equations themselves,with the increase in accuracy,difference scheme dependent network nodes will be increased,they are a two-level,explicit,and can be calculated from the difference scheme.
本文在差分格式的构造上主要是利用Taylor级数展开法并结合偏微分方程本身构造出二阶、四阶抛物型偏微分方程任意偶数阶精度的差分格式,随着精度的增加,格式所依赖的网格点将会有所增加,但都是两层的、显式的、可以自开始计算的差分格式。
2) arbitrary order accuracy
任意阶精度
1.
Two-level and three-level exelicit difference schemes with arbitrary order accuracy O (△t~p+△x~(2q))(p,q-positive integer)for schrodinger equation u_l=iu_(xx)(i~2= -1) having periodic solution is established by the method of lines.
对具有周期解的Schrodingcr方程u_=iu_(xx)(i~2=-1),用线方法构造了任意阶精度O(Δt~p+△x~(2q))(p,q为自然数)的两层和三层显格式。
3) Any even number-order equal-order N-th power Y-squeezing
任意偶数阶等阶N次方Y压缩
4) arbitrary-order derivative
任意阶导数
1.
In order to give a physical model for arbitrary-order derivative and integral,the resistance-capacitance fractal circuit and the resistance-inductance fractal circuit with self-similarity are analyzed,respectively.
为了对任意阶导数和积分给出物理模型,分别分析了具有自相似性的电阻-电容分形电路和电阻-电感分形电路。
5) Infinite Bits
任意位精度
6) multiple gradient
任意多阶梯度
补充资料:任意
1.任随其意,不受约束。 2.没有任何条件的。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条