1) generalλ-period dis-tribution
广义λ-周期分布
1.
In this pa-per,we define theλ-period distribution and the generalλ-period dis-tribution of error-correcting codes over finite field Fq on the basis ofprevious work,and show that they have some properties which are anal-ogous in some respects to properties of the period distribution and thegeneral period distribution of error-correcting codes over Fq.
本文在前人已有的工作基础上,定义了有限域Fq上一个纠错码的λ-周期分布和广义λ-周期分布,证明了它们与Fq上纠错码的周期分布和广义周期分布具有类似的性质,还分别找出了循环码和λ-循环码具有λ-周期的充要条件,并给出了有限域Fq上码长为n((n,q) = 1)的λ-循环码的λ-周期分布与最小λ-周期分布精确的计算公式,推广了文献中已有的关于Fq上纠错码周期分布和广义周期分布的一些结果。
2) λ-period distribution
λ-周期分布
1.
In this pa-per,we define theλ-period distribution and the generalλ-period dis-tribution of error-correcting codes over finite field Fq on the basis ofprevious work,and show that they have some properties which are anal-ogous in some respects to properties of the period distribution and thegeneral period distribution of error-correcting codes over Fq.
本文在前人已有的工作基础上,定义了有限域Fq上一个纠错码的λ-周期分布和广义λ-周期分布,证明了它们与Fq上纠错码的周期分布和广义周期分布具有类似的性质,还分别找出了循环码和λ-循环码具有λ-周期的充要条件,并给出了有限域Fq上码长为n((n,q) = 1)的λ-循环码的λ-周期分布与最小λ-周期分布精确的计算公式,推广了文献中已有的关于Fq上纠错码周期分布和广义周期分布的一些结果。
3) general period
广义周期
1.
In this paper, some properties of general period for linear codes are studied and its algebraic structures are prelimnarily constructed.
对线性码广义周期的一些性质作了研究,初步建立了线性码广义周期的代数结构。
4) generalized periodicsolution
广义周期解
5) generalized periodic ring
广义周期环
1.
The present paper describes the characterizations of generalized periodic rings and proves that a semiprime generalized periodic ring is either commutative or a direct sum of a nil ring and a P2ring, that is, for any element x there exists an even integer n such that xn=x.
给出了广义周期环的一些刻划,证明了半质的广义周期环或是交换环或是诣零环和P2-环的直和,并给出了一些特殊的广义周期环的刻划。
2.
A ring R is called a generalized periodic ring,if for every x∈R there exist a positive integer n=n(x) depending on x and a polynomial fx(t)∈Z[t] such that xn(x)=xn(x)+1fx(x).
设R是结合环,如果对每个x∈R,有依赖于x的正整数n=n(x)及fx(t)∈Z[t]使得xn(x)=xn(x)+1f(x),则称R为广义周期环。
6) period distribution
周期分布
1.
Notes on period distribution for two classes hamming codes;
关于两类汉明码周期分布的几点注记
2.
The calculation formulae for period distribution of q-ary BCH codes with designed distance 7 were obtained based on the discussion of cyclotomic cosets and property of cyclotomic polynomials: the period distribution is q s power.
通过对循环陪集的研究及利用分圆多项式的一个性质,得到了设计距离为7的q元BCH码的周期分布计算公式:码的周期分布为q的幂,当码的周期不等于某些特殊值时,幂为码长与周期的最大公因数。
3.
The period distribution of q-ary BCH codes is studied by some important theory functions and cyclotomic coset,and the number of non-periodic equivalence classes of q-ary BCH codes with design 5 is given.
利用一些重要的数论函数以及循环陪集,研究了BCH码的周期分布,得到了设计距离为5的q元BCH码的无内周期的码字个数,推广了文献[1]的结果。
补充资料:广义
范围较宽的定义(跟‘狭义’相对):~的杂文也可以包括小品文在内。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条