1) Euler midpoint scheme
Euler中点法
2) Euler midpoint formula
Euler中点公式
1.
Moreover,a shear force feedback Euler-Bernoulli beam equation was numerically simulated using the Euler midpoint formula.
基于广义Hamilton控制系统的几何结构,给出了适用于点测量,点控制计算与模拟的Euler- Bernoulli梁方程的广义Hamilton典则方程,并且对于一端加剪切力反馈的受控Euler-Bernoulli梁方程在周期初始条件下运用Euler中点公式进行了数值模拟。
3) Euler method
Euler法
1.
An expression of active risk for the flood relief is given,and the probability densities of reservoir level hydrography,which is related to the risk for the flood relief are computed by Euler method.
再利用数值解方法——Euler法,模拟了随机干扰下的库水位及其波动状况,并采用相应公式计算了洪水漫越坝顶事件的概率以及库水位过程在不同时刻的样本均值。
4) Euler method
Euler方法
1.
Additionally we prove the numerical solutions of the implicit Euler method are stable under this condition.
在此条件下还证明了隐式Euler方法的数值解是稳定的 。
2.
The choices of discrete time step for Euler method and trapezoidal method and terminating condition of iteration in trapezoidal method are discussed in this paper for numerical implementation of continuous time Hopfield network.
讨论使用Euler方法和梯形方法在数值求解连续时间的Hopfield网络模型时,离散时间步长的选择和迭代停止条件问题。
3.
By Virtue of the bad convergence of the Euler method,it is important to study the stability of the Euler method for a very small h.
由于Euler方法的收敛性较差,研究步长很小时Euler方法的稳定性有着重要的意义。
5) Euler-Maruyama method
Euler-Maruyama方法
1.
T-stability of the Euler-Maruyama method was studied for stochastic delay differential equation of neutral type.
研究了中立型随机延迟微分方程Euler-Maruyama方法的T-稳定性。
2.
The exponential stability of differential equations with stochastic jumping time-delay was studied on the basis of Euler-Maruyama method.
研究带跳时滞随机微分方程Euler-Maruyama方法的指数稳定性。
3.
The exponential stability of Euler-Maruyama method for the stochastic differential variable delay equation with jumps is mainly studied.
研究了带跳变时滞随机微分方程Euler-Maruyama方法的指数稳定性。
6) implicit Euler method
隐式Euler法
1.
Nonlinear stability of implicit Euler method for MDDEs;
MDDEs隐式Euler法的非线性稳定性
2.
This paper deals with the numerical stability of implicit Euler method for nonlinear pantograph equation in which constant stepsize and variable stepsize are applied.
讨论非线性比例延迟微分方程隐式Euler法的数值稳定性,其中步长采用定步长和变步长两种方式。
3.
The explicit Euler method,the implicit Euler method and the Crank-Nicolson scheme are used for the time discretization respectively.
研制了分别用显式Euler法、隐式Euler法、Crank-Nicolson格式(梯形方法)求解带第一、第二及混合边值条件的抛物问题的应用软件,通过求解若干抛物问题对该软件作了测试,获得了预期的数值结果,讨论了时间和空间步长的变化对格式计算结果的影响,得到了三种方法的稳定性、收敛精度和计算量。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条