1) matrix eigenproblem
矩阵特征问题
1.
With the development of computer science and the advent of parallel computing, matrix eigenproblem have become one of the chief tasks of the large-scale computers.
矩阵特征问题是数值计算的一个重要组成部分,也是当前迅速发展的计算机科学和数值代数中一个活跃的研究课题。
2) matrix eigenvalue problem
矩阵特征值问题
1.
The matrix eigenvalue problem can be used to solve directly a lot of mathematical problems such as nonlinear programming, optimization, ordinary differential equations, and computational methods.
矩阵特征值问题不仅可直接解决数学中诸如非线性规划、优化、常微分方程 ,以及各类数学计算问题 ,而且在结构力学、工程设计、计算物理和量子力学中具有重要作用 ,目前矩阵特征值问题的应用大多来自于解数学物理方程、差分方程、Markov过程等。
3) Generalized Eigenvalue Problem
矩阵广义特征值问题
1.
Parallel Algorithm for Generalized Eigenvalue Problem of Symmetric Matrix Pencils;
计算实对称矩阵广义特征值问题的并行算法
4) eigenvalue problems of complex matrices
复矩阵特征值问题
5) Inverse eigenvalue problem
矩阵逆特征值问题
1.
Inverse eigenvalue problems arise in a remarkable variety of applications.
矩阵逆特征值问题就是根据给定的谱数据构造矩阵,给定的谱数据可以是全部或部分关于特征值或特征向量的信息。
6) generalized inverse eigenvalue problems of matrices
矩阵广义逆特征值问题
补充资料:矩阵特征值问题数值解法
矩阵特征值问题数值解法
numerical solution of matrix eigenvalue problems
]uzhen tezheng zhi wenti ShuZhil}efQ矩阵特征值问题数值解法(n~ical solu-tion of matrix eigenvaluep均bl~)指在数字计算机上,研究如何采用有效的数值方法求矩阵特征值和特征向量的近似值的方法和过程。对元素为实数或复数的n xn维矩阵A,求数几和对应的非零向量x,使Ax二众,这样的问题称为矩阵特征值问题,也称代数特征值问题,几和x分别称为矩阵A的特征值和特征向量。矩阵特征值问题数值解常出现于动力系统和结构系统的振动问题,以及物理学中临界值的确定。对于微分方程等连续系统的特征值问题,若用离散化的数值方法求解也归结为矩阵特征值间题。此外,在其它数值方法理论分析和讨论计算过程对舍人误差的稳定性问题时,都与矩阵特征值问题有密切联系。 矩阵A的特征值几是特征多项式Pn(劝=det(汀一A)的根。其中I为n xn阶单位矩阵。传统方法是通过求凡(劝=0的根求出特征值几*(i二1,…,n),再求其相应特征向量。这种方法只能求低阶矩阵特征值,对于。>4的高次多项式,一般不能用有限次运算求出根的精确值,直接用多矩·469·项式求根,工作量大且稳定性差。因此,目前求矩阵特征值和特征向量的方法主要是向量迭代法和变换方法两类。 向t迭代法不破坏原矩阵A,而是利用A对某些向量做运算产生迭代向量的求解方法,多用来求矩阵的部分极端特征值和相应的特征向量。乘不法和反苹法均属此类。 乘幕法用来求矩阵按模最大特征值与对应特征向量的一种迭代法,它以矩阵乘幂运算为主,也称幂法,设n阶矩阵A有一个完全的特征向量组,其”个线性无关的特征向量为x(l),x(2),…,x(·),对应特征值按模大小满足条件:}几1}>}肠})…).、。:。任取一个初始向量,。笋。,且,。二乙。,x(决)(设。l护。),于是、一、*,。一*、[·1一客一(佘)飞(,’] 由假设}久l}>}礼},当k足够大时,Akvo除相差一个纯量因子外趋于幻所对应的特征向量,实际计算时为避免出现溢出,可采用规范化方法。最简单的幂法迭代格式如下: 取初始向量v0笋。(al半0),计算 u*=A性一1,m*=rnax(u奋) Ukl,,,咋=—气纪=1,‘。’二 开扭走下三角矩阵、平面旋转阵、豪斯霍尔德矩阵等),从矩阵A出发逐次进行相似变换,使变换后的矩阵序列趋于容易求得特征值的特殊形式的矩阵(如对角阵、三角阵、拟三角阵、三对角阵等)。这类方法多用于求中小规模矩阵的全部特征值,其优点是收敛速度快、计算结果可靠。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条