1) cyclically optimal
最优圈边连通图
1.
A cyclically separable graph G with cλ(G)=ζ(G) is said to be cyclically optimal.
如果一个圈可分离图G有cλ(G)=ζ(G),则称它为最优圈边连通图。
2) super cyclically edge-connected
超圈边连通图
1.
We call a graph super cyclically edge-connected,if the removal of any minimum cyclic edge-cut results in a component which is a shortest cycle.
对一个最优圈边连通图来说,如果删除任意一个最小的圈边割集会使一个分支恰好是一个最短圈,那么我们称这样的图为超圈边连通图。
3) optimal super λ
最优超级边连通
1.
This paper proved that: (1) The condition ( F 1 ) is also necessary, hence a characterization for a graph with diameter 2 to be super λ is established; (2) (F 3)(F 2)(F 1) , but ( F 1)/(F 2)/(F 3 ); (3) The condition ( F 3 ) is also sufficient for a graph with diameter 2 to be optimal super λ , which is defined naturally by.
本文证明了:(1)条件(F1)也是必要条件,从而得到直径为2的图是超级边连通图的特征刻画;(2)(F3)(F2)(F1),但(F1)/(F2)/(F3);(3)条件(F3)可进一步保证图是最优超级边连通的,但(F2)不能。
4) Optimally super-edge-connected
最优超边连通性
5) cyclely-4-edge-connected
圈4-边连通
6) cyclic edge connectivity
圈边连通度
1.
Efficient algorithm for cyclic edge connectivity of planar graphs
平面图圈边连通度的有效算法
补充资料:单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通和多(复)连通超导体(simplyandmultiplyconnectedsuperconductors)
单连通超导体一般指的是不包含有非超导绝缘物质或空腔贯通的整块同质超导体,若有非超导绝缘物质或空腔贯通的超导体则称为多(复)连通超导体。从几何学上讲,在超导体外表面所包围的体积内任取一曲线回路,这回路在超导物质内可收缩到零(或点),且所取的任意回路均可收缩到零而无例外,则称单连通超导体。若有例外,即不能收缩到零,则称多连通超导体。例如空心超导圆柱体,则在围绕柱空腔周围取一回路就不能收缩为零。多连通超导体可有磁通量子化现象(见“磁通量子化”)。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条