1) evolution differential inclusion
发展微分包含
2) controllability
发展包含
1.
The purpose of this paper is to study controllability for the evolution inclusion with nonlocal conditions.
研究带有非局部条件发展包含的可控性,在多值函数F(t,x)取凸情形时将所讨论的问题转化为集值积分算子的不动点问题,利用凝聚映射不动点定理给出发展包含可控性的充分条件。
2.
By applying a fixed pointed theorem for condesing maps,the sufficient conditions of controllability are given.
利用凝聚映射的不动点定理给出了一类发展包含的可控性的充分条件,处理问题的方法是基于解的积分表示,将所讨论的问题转化为集值积分算子的不动点问题。
3) Evolution inclusion
发展包含
1.
The periodic problem of evolution inclusion is studied and its results are used to establish existence theorems of periodic solutions of a class of semi_linear differential inclusion.
研究了一类发展包含的周期问题,其结果应用于建立一类半线性微分包含周期解的存在性定理· 给出了半线性微分包含端点解的存在性定理和强松驰定理,并且应用于周期反馈控制系统·
4) differential inclusion
微分包含
1.
Existence and regularity of integral solutions for nonlinear parabolic differential inclusions;
非线性抛物型微分包含积分解的生存性及正则性
2.
Filippov theorem for C~1-trajectories of Aubin's differential inclusions
Aubin微分包含的C~1-轨Filippov型定理
3.
Equivalence between control systems with complementar constraints and differential inclusions
互补状态约束系统与微分包含的等价性研究
5) differential inclusions
微分包含
1.
Nonlinear Boundary Value Problems for Differential Inclusions;
微分包含的非线性边值问题
2.
Viability theory is an advanced field,in which differential inclusions are used to research the state evolutions on systems with uncertainties under constraints.
生存理论是利用微分包含来研究不确定系统在各种约束条件下状态演变的前沿领域,适用于解决经济、生物、社会等含不确定因素较多的宏观复杂大系统问题。
3.
A viability theorem for the partial differential inclusions is proved and a topological property of the viability solution set for the partial differential inclusions is given.
研究Hilbert空间中偏微分包含解轨道的生存问题,证明了具有右端不连项的非自治偏微分包含的生存定理,并研究了生存解集的拓扑性质。
6) nonlinear evolution inclusion
非线性发展包含
补充资料:发展
发展
development
指疾病或病情的蔓延、扩散或加重的意思。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条