说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 拟直积
1)  quasi-direct product
拟直积
1.
Further, we proved that every normal orthodox semigroup with inverse transversals is isomorphic to the quasi-direct product of a left normal band,an inverse semigroup and a right normal band.
得到了具有逆断面的正规纯正半群的构造方法,证明了具有逆断面的正规纯正半群同构于左正规带、逆半群和右正规带的拟直积
2.
We generalize the structure of quasi-direct product to eventually regular semigroups and characterize the new definition of quasi-direct product on eventually regular semigroups, so we obtain the structure and nature of an eventually regular semigroup whose idempotents satisfy permutation identities.
然后把拟直积的结构推广到π-正则半群上,构造出π-正则半群S上拟直积新的定义,从而得出幂等元满足置换等式的π-正则半群的结构及其一些相关性质。
2)  generalized quasi-direct product
广拟直积
1.
Then,as a special case of the generalized quasi-direct product, the quasi-direct product and the left(right) semi quasi-direct product, as well as their relations are discussed.
文中先给出了半群的广拟直积的概念,并讨论了它的基本性质,广拟直积给出了一种非常广泛的半群合成方式。
3)  semiquasi-direct product
左(右)半拟直积
4)  subdirect product of distributive lattice and skew-ring
分配格和拟环的次直积
1.
The least skew-ring congruence on E-inversive E-semiring is described,and the structure of a class of E-inversive E-semiring is obtained,which is the subdirect product of distributive lattice and skew-ring.
首先引入和描述了E-逆E半环上的最小拟环同余,然后刻画了是分配格和拟环的次直积的E-逆E半环。
5)  kronecker product
直积
1.
DBL access codes are generated from the left or right kronecker product of the LS codes and the extending matrix,and are called DBL left-product codes and DBL right-product codes,respectively.
DBL码由基本LS码与矩阵左、右直积生成,分别称为DBL左乘码和DBL右乘码,两类DBL码各有特点。
2.
The concept of Kronecker product is introduced into graph theory in this paper.
将矩阵直积的概念引入图论,证明了直积图的结点数、度及特征值分别等于原图结点数之积、度之积和特征值之积,并将这些性质应用于由两个膨胀图构造一个新的膨胀图,分别从矩阵的角度和图的角度给出了构造算法。
3.
Several diagonall dominant properties and ∞-norm inequalities for Kronecker product of diagonally dominant matrices are given.
给出了对角占优矩阵直积的一些对角占优性质以及∞-范数估计式。
6)  direct product
直积
1.
Isomorphic representations of cyclic groups and their direct product;
循环群与循环群直积的同构表示
补充资料:半直积


半直积
semi-direct product

【补注】A乘以B的半直积通常记作B冈A或B:A.石生明译王杰校半直积[胭顽一面eCt pr仪IuCt;no几ynp“Moe npo“3哪e-““e],群A乘以群B的 群G=AB,是它的子群A及B的积,其中B是G的正规子群且A门B二{1}.若A也在G中正规,则半直积成为直积(direct Pr以luCt).两个群AB的半直积不是唯一决定的.为构造半直积还应知道A的元素在B上的共扼作用诱导出B的哪些自同构.精确地说,设G二AB是半直积,则对每个元素“任A,对应到自同构:。〔AutB,它是由元素a作共扼: :。(b)=aba一’,b任B.这里,对应a~:。是A~AutB的同态.反之,设A及B是任意群,则对任何同态p:A~AutB有群A乘以群B的唯一半直积,满足:。“印(a),对任意a‘A.半直积是群B被群A所扩张的特殊情况(见群的扩张(e刀比nsion of agro印));这样的扩张称为分裂的(sPlit).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条