1) Bochner type vanishing theorem
Bochner型消灭定理
2) Kodaira vanishing theorem
Kodaira消灭定理
1.
Finally ,we prove the Kodaira vanishing theorem and the Hodge theorem.
本文介绍了复流形上偏微分算子v,(?),δ以及复Laplacian □,(?),△的定义,计算了偏微分算子v,口作用于C~∞(p,q)-形式后得到的新的微分形式的分量,验证了Kodaira消灭定理和Hodge定理。
3) Bochner-typed formula
Bochner型公式
4) Bochner-Martinelli type integral
Bochner-Martinelli型积分
1.
Boundary properties of Bochner-Martinelli type integral;
Bochner-Martinelli型积分的边界性质
5) Bochner type inequality
Bochner型不等式
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条