1) conical lattice-ordered idempotent monoid
锥形格序幂等元么半群
2) Semigroup of Idempotent
幂等元半群
3) right weakly-idempotent ordered semigroups
右次幂等元序半群
4) semilattice of idempotents
幂等元半格
1.
The existence and equi va lent uniqueness of the localization of a C-rpp semigroup S are proved, with respect to its semilattice of idempotents.
得到了 C- rpp半群在幂等元半格上的局部化在同构的意义下存在惟一 ,并证明了其局部化为仅有一个幂等元 (即幺元 )的左可消幺半群 ,从而证明了 Clifford半群在其幂等元半格上的局部化为群 。
5) idempotent element monoids
幂等元幺半群
1.
Some equivalent conditions out of condition (E′) were given and some equalizer-flat category characters of idempotent element monoids were discussed by using condition(E)and equalizer-flat.
给出了条件(E)的推广即条件(E′)的等价刻画,并利用条件(E′)和均衡平坦性给出了幂等元幺半群的S-系范畴特征,即证明了若S是幂等元幺半群则所有S-系是均衡平坦的,所有S-系满足条件(E′),所有S-系满足条件(E)是等价的。
6) idempotent-generated semigroup
幂等元生成半群
补充资料:幂等元的半群
幂等元的半群
idempotents, semi -group of
式.幂等元的半群【i山和四把血,胭山.gr0llPof;“朋MnoTe“-功。no刀yll.担na」,幂等元半群(idemPotent semi-gr。叩) 每个元素皆为幂等元(记enlPo忆nt)的半群.幂等元半群亦称为带(恤nd)(这与半群的带(比11dof~一grouP)的概念相容:幂等元半群是单元素半群的带).交换的幂等元半群称为半格(~一扭仗元c);这术语与它在偏序集理论中的应用相容:若对交换幂等元半群S考虑其自然偏序,则元素a,b任S的最大下界正是ab.半格是二元半格的次直积.若半群S满足恒等式尤y=x,xy=y中的一个,则称S为奇异的(sin孚har);在第一种情形,S是左奇异的(left-sin酗ar),或左零半群(~一gro叩of left Zero‘),第二种情形是右奇异的(石乡止.singr血r)或右零半群(s咖一gro叩of rigllt zeros).一个半群称为矩形(既-扭ng口ar)半群,若它满足恒等式义yx二戈(该术语有时在稍广的意义下使用,见【11).对半群S,下列条件是等价的:1)5是矩形半群;2)5是理想单的幂等元半群(见单半群(s加P1e~·gro叩));3)S是幂等元完全单半群(c omplete】y一sirnples洲一grouP);及4)S同构于直积L xR,其中L是左奇异半群而R是右奇异半群.每个幂等元半群是C五成阔半群(Oifford sen卫·gro叩)且分裂成矩形半群的一个半格(亦见半群的带(比nd ofs洲·groups)).这个分裂是幂等元半群的许多性质研究的起点.幂等元半群是局部有限的 幂等元半群已从各种观点得到研究,包括簇论的观点.令所有幂等元半群的簇为见,在【4]一16]中完全地描述了黔的所有子簇的格;它是可数的,分配的,且簇见的每个子簇由一个恒等式确定.这个格可图解如下: II 二,:二J,,:角二,:.二:,, _1 FJ.工V今飞冲匕母丁yr‘yl 艺卜,’=Z,’F仁之子洲叼2盛.丢二月工yZ二yXZ 华‘\\工岁夕zIt, J二y图中对黔中较低层的一些簇给出了与其相应的恒等
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条