说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 高阶导数递推
1)  recursive high order derivative calculation
高阶导数递推
2)  An Order Recurrence Sequence of Number
一阶递推数列
3)  higher order derivatives
高阶导数
1.
Using the DitzianTotik moduli of smothness,the authors give the characterization of higher order derivatives for the generalized Baskakov operators.
讨论广义Baskakov算子借助Ditian Totik光滑模给出的高阶导数的特征刻画,统一了点态和整体的2种结果。
2.
A varying limit of integration and several higher order derivatives are appeared in these inequalities.
讨论具变动积分限并含有高阶导数的积分微分不等式,适当选取变积分限的值,可由它们导出包含许多已知结果的新Opial型不等
4)  higher order derivative
高阶导数
1.
In this paper, through analyzing the structural features of a kind of ralatively complicated functions derivative and of this kind function itself, we deduce quickly and accurately the consequences of some kinds of functions primary functions and their higher order derivatives, without any analysis and opreation.
通过分析一类较为复杂函数的导数与其自身的结构特征 ,获得了由该类函数的一阶导数及其自身的结构特征 ,在不需要任何分析运算条件下 ,即可快速准确推知该类函数的原函数及其高阶导数的结果 研究结果表明 :高阶导数与原函数这对互逆运算在该类函数中可实现统一 利用该结果可给实际运算带来许多简化与方
2.
In this paper, the higher order derivative and the primary function of several special kinds of function are investigated, we then obtain the characteristic of those functions and it s primary function.
本文通过研究几种特殊类型函数的高阶导数与原函数的求法 ,获得了由该类函数自身及其一阶导数的特征 ,即可快速写出该类函数的 n阶导数 y( n) 与原函数 y( - 1 ) 的统一公式 y( n) ( n=-1 ,1 ,2 ,3 ,… ) 。
3.
We make use of the existence of the H2 solution of Hasegawa-Mima equation and a prioris estimates of the higher order derivative to derive the higher order solution,and show the regularity of the solution.
给出带扰动项的Hase-gawa—Mima方程的解的存在性及解的正则性,主要利用了带扰动项的Hasegawa—Mima方程的H2解的存在性和高阶导数的先验估计来得到高阶解的存在性,并给出了解的正则性。
5)  derivative of higher order
高阶导数
1.
At first, this paper introduces the wavelet function, scaling function of Daubechies wavelet and the modified solving methods of derivative of higher order for scaling functions are given.
本文首先介绍了Daubechies小波函数、尺度函数,给出了尺度函数高阶导数的改进求解方法。
6)  higher derivative
高阶导数
1.
Several theories on the higher derivative;
关于高阶导数的几个定理
2.
Author presented a concise gradual derivation about higher derivative whose function defined by paramtric eguation.
求由参数方程所确定的函数的高阶导数,提出了一种较为直观、简便的逐次求导方法。
3.
A recurrence formula of higher derivatives for the integral of universal Cauchy type is given,by making use of the formula,it is proved that analytic functions are infinitely differentiable.
给出了泛Cauchy型积分高阶导数的一个递推公式,并由此证明了解析函数的无限次可微性定理。
补充资料:递归数列
递归数列
recursive sequence 

   一种用归纳方法给定的数列。例如,等比数列可以用归纳方法来定义,先定义第一项a1的值(a1≠0),对于以后的项,用递推公式an+1qanq≠0,n=1,2,…)给出定义。一般地,递归数列的前ka1a2,…,ak为已知数,从第k+1项起,由某一递推公式an+kfanan+1,…,an+k-1)(  n=1,2,…)所确定。k称为递归数列的阶数。例如 ,已知 a1=1,a2=1,其余各项由公式an+1anan-1n=2,3,…)给定的数列是二阶递归数列。这是斐波那契数列,各项依次为 1,1,2,3,5,8,13,21,…,同样,由递归式an+1an =anan-1a1a2为已知,n=2,3,… ) 给定的数列,也是二阶递归数列,这是等差数列。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条