2) differential inclusion
微分包含
1.
Existence and regularity of integral solutions for nonlinear parabolic differential inclusions;
非线性抛物型微分包含积分解的生存性及正则性
2.
Filippov theorem for C~1-trajectories of Aubin's differential inclusions
Aubin微分包含的C~1-轨Filippov型定理
3.
Equivalence between control systems with complementar constraints and differential inclusions
互补状态约束系统与微分包含的等价性研究
3) differential inclusions
微分包含
1.
Nonlinear Boundary Value Problems for Differential Inclusions;
微分包含的非线性边值问题
2.
Viability theory is an advanced field,in which differential inclusions are used to research the state evolutions on systems with uncertainties under constraints.
生存理论是利用微分包含来研究不确定系统在各种约束条件下状态演变的前沿领域,适用于解决经济、生物、社会等含不确定因素较多的宏观复杂大系统问题。
3.
A viability theorem for the partial differential inclusions is proved and a topological property of the viability solution set for the partial differential inclusions is given.
研究Hilbert空间中偏微分包含解轨道的生存问题,证明了具有右端不连项的非自治偏微分包含的生存定理,并研究了生存解集的拓扑性质。
4) Filippov solutions
Filippov解
1.
It is mainly discussed uniformly ultimate boundedness of nonautonomous sys- tems with discontinuous right-hand sides(in the sense of Filippov solutions).
主要讨论右端不连续的非自治系统在Filippov解意义下的一致最终有界性问题。
5) Filippov solution
Filippov解
1.
By utilizing the notion of Filippov solution,Clarke generalized gradient and nonsmooth Lyapunov stability theory,a further discuss on sliding mode control is presented for second-order systems with a nonsmooth linear Lipschitz continuous sliding surface.
利用Filippov解、Clarke广义梯度和非光滑Lyapunov稳定理论,对一类滑模面设计为非光滑线性Lipschitz连续平面的二阶系统滑模控制问题进行深入讨论。
2.
The stability of the sliding mode and reaching mode were proved by the properties of Filippov solution and generalized Lyapunov theory respectively.
借助集值映射的概念,将原非连续微分方程转化为Filippov微分包含,利用Filippov解的性质证明了滑动模态的稳定性,依据非光滑广义Lyapunov稳定理论,证明了在Filippov框架下闭环系统的轨迹将在有限时间到达滑模面,从而闭环系统渐近稳定。
3.
The problem of finite-time stability is mainly discussed with respect to a closed(not necessarily compact) invariant set for a class of nonlinear systems with discontinuous right-hand sides in the sense of Filippov solutions.
主要研究右端不连续系统在Filippov解意义下关于闭不变集(未必是紧集)的有限时间稳定问题。
6) Filippov-type ordinary differential equations
Filippov-型常微分方程
1.
In this thesis, we mainly investigate practical stability for Filippov-type ordinary differential equations and stochastic differential equations with discontinuous coefficients,and the numerical computation for stochastic differential equations with discontinuous coefficients.
本文主要研究了Filippov-型常微分方程的广义实用稳定性,系数间断的随机微分方程的p次均值实用稳定性,以及系数间断的随机微分方程的数值解法。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条