1) Embedding Theorem of Prefix Code
前缀码的嵌入定理
2) Embedding theorem
嵌入定理
1.
Orbifold embedding theorem;
Orbifold嵌入定理
2.
Ideals and embedding theorem of co-residuated lattices;
余剩余格的理想和嵌入定理
3.
A proof of the embedding theorems in the spaces of W_0~(1,N)(Ω) and W~(1,p)(R~N)
关于空间W_0~(1,N)(Ω)与W~(1,p)(R~N)上嵌入定理的一种证明
3) imbedding theorems
嵌入定理
1.
In this paper, we first introduce a new kind of A~(λ_3)_r (λ_1, λ_2,Ω) two-weight, then we obtain some two-weight integral inequalities which are generalizations of the imbedding theorems, Poincare inequality, Caccioppoli-type estimate and weak reverse Holder inequality for differential forms when α= 1.
在本文中,我们首先引入了一种新的A_τ~(λ_3)(λ_1,λ_2,Ω)双权,然后得到了当α=1时,微分形式的局部双权的嵌入定理,Poincare不等式,Caccioppoli型估计和弱逆H(?)lder不等式。
2.
This paper considers the imbedding theorems of Sobolev space in one dimensional.
考虑一维区域上的Sobolev空间的嵌入问题,应用牛顿-莱布尼茨公式、柯西不等式、H觟lder不等式给出了一系列嵌入定理的直接证明。
4) Imbedding theorem
嵌入定理
1.
We establish the estimates of positive solutions to a strongly coupled ecological systems in L∞(0,T;H1(Ω)) by energy methods and using Sobolev imbedding theorem and interpolation.
运用能量方法,通过采用嵌入定理、内插不等式建立了非线性强耦合生态系统正解的L(∞0,T;H(1Ω))估计。
2.
The commonly Sobolev imbedding theorem is developed to domain of special regularity.
将常用的Sobolev嵌入定理推广到具有特殊正则性的区域上去,并证明了强局部Lipschitz性质和一致Cm-正则性区域下的嵌入定理。
3.
In a class of Besov-type normed linear spaces of multivariate periodic functions with a given mixed modulous of smoothness some imbedding theorem and trace theorems are established.
在多元周期的Lp(1<p<∞)空间内,对一类具有一定混合光滑模的、被赋以Besov型范数的线性子空间,利用Nikolskii-Lizorkin型的函数表现定理证明了嵌入定理、迹定理及其逆定理(延拓定理)。
5) The imbedding theorem
嵌入定理
1.
An existence theorem of weak solution to a class of biharmonic equation was proved by the sub-super-solution method,the imbedding theorem and the Leray-schauder fixed point theorem.
利用上下解方法、嵌入定理和Leray-Schauder不动点定理证明了一类双调和方程弱解的存在性定理。
6) prefix code
前缀码
1.
The aim of this paper is to study prefix codes.
主要目的是研究前缀码,得到了前缀码与极大前缀码的若干特征。
2.
Data compaction is an important technique of the computer science,prefix codes gained by using Huffman algorithm can make the total length of codes in the file shortest.
数据压缩是信息科学中的一项重要的技术,利用Huffman算法得到的前缀码可以使文件总编码长度最短。
补充资料:前缀
1.加在词根前面的构词成分﹐如"老鼠"﹑"老虎"里的"老"﹐"阿姨"里的"阿"。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条