说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 孙子定理探源
1)  A Research into the causes of Chinese Remainder Theorem
孙子定理探源
2)  Chinese Remainder Theorem
孙子定理
1.
Based on discrete logarithms and square roots model count jointly and used CRT(Chinese Remainder Theorem)and Nevill formula for interpolation,a new shared scheme is proposed.
基于求有限域上离散对数和模合数平方根的难解问题,利用孙子定理和Nevill插值公式设计了一类新型的秘密分享方案,该方案能有效地解决利益冲突双方共享秘密的实际问题,并且能够简单地推广至更多方之间共享情况。
2.
To apply programming to the theory of numbers,the paper starts with Chinese remainder theorem and presents computer program for set of linear congruences,by means of analyzing its solving process.
作为程序设计在数论中的应用,本文从孙子定理入手,通过剖析“大衍求一术”方法,给出一次同余式组的计算机求解。
3.
The problem of linear congruent equation class was studied by"form fraction"to get the congruence root of linear congruent equation class,and some interesting results was obtained,It was an extension of Chinese remainder theorem.
研究了更一般的互素模一次同余式组的求解问题 ,利用形式分数的性质在不求出每一个同余式解的情况下给出了互素模一次同余式组a1x≡b1(modm1) ,a2 x≡b2 (modm2 ) ,… ,akx≡bk(modmk) (ai,mi) |bi 解的表达式 ,得到了几个有益的结果 ,在理论上作了一种新的尝试 ,给出了统一的表达式 ,从而推广了孙子定
3)  Sunzi theorem
孙子定理
1.
This paper first introduces traditional question of remainder: "known remainder of a positive integer to be different positive integer divide, seeking this positive integer", then compares and analyzes exhaustive algorithm and the Chinese remainder theorem (Sunzi theorem) with mathematical analysis algorithm, and with computer programming.
分别采用穷举算法和中国剩余定理(孙子定理)的数学分析算法进行计算机编程求解,对传统余数问题,即对"已知一个正整数被不同的几个正整数除后的余数,求该数"的问题进行了分析,并比较了两种算法的特点。
2.
A new password authentication scheme is proposed after introducing the famous Sunzi theorem and Euler function.
在介绍著名的孙子定理和欧拉函数的基础上,提出了一种新的口令验证方案。
4)  the Chinese Remainder Theorem
孙子定理
1.
(t,n) Threshold Group Signature Scheme Based on the Chinese Remainder Theorem;
基于孙子定理的(t,n)门限群签名方案
5)  CR code
孙子定理码
6)  Sunzi remainder theorem
孙子余数定理
1.
This paper introduces a resolving fuzzy technique by use of Sunzi remainder theorem in the wide bandwidth and multiple baseline interferometer receiver,contrasts the remainder theorem resolving ambiguity technique with the normal phase resolving ambiguity technique,describes the Sunzi remainder theorem,and points out the derivation process of resolving fuzzy by use of Sunzi remainder theorem.
介绍了在宽频带多基线干涉仪接收机中利用孙子余数定理进行解模糊的技术,将常规的相位解模糊技术和余数定理解模糊技术进行比较,对余数定理进行了描述,并给出了采用余数定理解模糊的推导过程。
补充资料:孙子定理
孙子定理

    中国古代求解一次同余式组(见同余)的方法。是数论中一个重要定理。又称中国剩余定理。公元前后的《孙子算经》中有“物不知数”问题:“今有物不知其数,三三数之余二 ,五五数之余三 ,七七数之余二,问物几何?”答为“23”。也就是求同余式组x≡2 (mod3),x≡3 (mod5 ),x≡2 (mod7)(式中ab (modm)表示m整除ab )的正整数解。明朝程大位用歌谣给出了该题的解法:“三人同行七十稀,五树梅花廿一枝,七子团圆月正半,除百零五便得知。”即解为x≡2×7+3×21+2×15≡233≡23(mod105)。此定理的一般形式是设m =  m1 ,… mk 为两两互素的正整数,mm1,…mmmiMii=1,2,… k 。则同余式组xb1(modm1),…,xbk(modmk)的解为xM'1M1b1+…+M'kMkbk (modm)。式中M'iMi≡1 (modmi),i=1,2,…,k 。直至18世纪 C.F.高斯才给出这一定理。孙子定理对近代数学如环论,赋值论都有重要影响。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条