说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 正弦定理的应用
1)  Application of the Sine Theorem
正弦定理的应用
2)  sine theorem
正弦定理
1.
Recently,th e sine theorem and cosine theorem in the Euclidean plane E~2 were extended to the 3-dimensional Euclidean space E~3.
近期将欧氏平面E2上的正弦定理和余弦定理推广到三维欧氏空间E3中,建立了E3中四面体空间角正弦定理、二面角正弦定理和四面体余弦定理,利用向量给出了三维余弦定理和三维正弦定理的简单证明。
2.
Based on the concept, the sine theorem for simplex is generalized further.
本文利用 Grassmann代数建立 n维欧氏空间中单形的 k级 n- k+ s维顶点角的概念 ,在此基础上对单形的正弦定理再作推广 ,并获得单形新的一类体积公式和一个几何不等式 。
3)  Sine law
正弦定理
1.
Chapter 1 introduces the concept of multi-dimensional angle and some concepts related, gets a sine law in another way for a simplex and obtains a new way to prove the second cosine law and the Bartos sine law for a simplex.
第一章介绍单形的多维角与相关的概念,给出了单形一种形式的正弦定理,并给出了单形第二余弦定理和Bartos正弦定理的新证明。
4)  higher dimentional sins law
高维正弦定理
5)  cosine theorem of angle
角的余弦定理
6)  cosine theorem of sides
边的余弦定理
补充资料:正弦


正弦
sine

  正弦[菌.班;c““yc」 三角函数(trJ即nometxic彻犯tions)之一: 夕二Sm无定义域是整个实轴,值域是区间【一l,1].正弦是奇周期函数(周期为2幻.在正弦和余弦(cos流)之间存在公式 sin Zx+cos Zx二1.在正弦和余割(c%eca幻t)之间存在公式 l SlllX=— COSeCX正弦的导数是 (sinx)‘=c挑x.正弦的不定积分是 了sin二J二一。os二十。.正弦的幂级数展开是 x 3 .xs sm戈“工一亩+丁一“’,一田<“<羌正弦的反函数是反正弦(往戊s比). 在复自变量z的正弦、余弦和指数函数之间存在Euhr公式(Eular fonn山a): e‘;“eos艺+1 sin二, e,乙一e一,z sm:一万万-’井且如果:“ix是纯虚数,则 sinx二一sinhx,其中sinhx是双曲正弦.10,A.r叩砍帕撰[补注]当然,sinx也可由E川er公式或幂级数来定义.一个直观定义如下所述.考虑一个单位圆,其中心在直角坐标系的原点O,以及一个旋转半径OP.设x是口月和口尸之间的夹角(取反时针方向为正),P’是尸在OA上的投影.这时,sinx定义为比(pP‘)/(OP),eosx定义为(OP‘)/(Op),tanx定义为(PP‘)/(01〕‘).{ 另一个(解析的)方法是从定义在闭区Iblt一1,11上的函数,(、)出发,,(、)一丁;山/V飞二了·当x=土l时,这个积分是反常的,但是收敛.不难看出,中(x)在闭区间[一1,l]上是单调增加的和连续的,在开区间(一1,l)上是可微的,并且在卜耐2,二/2J上取值.因此,它具有在〔一九/2,二/2J上定义、在[一1,11中取值的反函数.这个反函数称为sinx,并且可以证明它的定义域可以延拓到整个实轴.函数甲(、)称为反正弦(暇ine). sinx的图形是正弦曲线(s山usoid)(亦见三角函数(trlgo加服tr沁functions)).
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条