1) Determination of nonsingular matrix
矩阵非奇异性判定
2) non-singular matrix
非奇异矩阵
1.
If A is non-singular matrix,the equation Xm=A has finitely many solutions.
当矩阵是非奇异矩阵时,它的m次矩阵根是有限个,特别是一个非奇异的Jordan块的m次矩阵根有m个。
3) nonsingular matrix
非奇异矩阵
1.
In this paper,the singular value of nonsingular matrix A is ordered,By the use of the arithmetic-geometric mean inequality and the properties of singular value of matrices,We obtain some inequalities of sum and product of the singular value.
本文给出非奇异矩阵A的奇异值的从大到小的排列,利用代数-几何均值不等式以及矩阵奇异值的性质,得到矩阵奇异值和与积的一些不等式,而这些不等式仅仅用到k,l,n矩阵的迹与行列式。
4) nonsingular matrices
非奇异矩阵
1.
And an extension of the new inequality established is given when both A and B are nonsingular matrices of order \$n\$.
当A,B为n阶非奇异矩阵时,给出了新创建不等式的一个推广。
5) Nonsingular complex positive semidefinite matrix
非奇异复半正定矩阵
6) matrix singularity
矩阵奇异性
1.
A method was presented for solving the problem of fluid stiff matrix singularity existed in the solution of the fluid structure coupling equation based on displacement(structure) press(fluid with free surface) formulation.
其中包括考虑流体液面为自由时,流体刚度矩阵奇异性的消除方法,以及对于旋转轴上包含自由度的系统在引入旋转周期方法后的约束问题,文中给出了系统的处理方法。
补充资料:非奇异矩阵
非奇异矩阵
non-angular matrix:
非奇异矩阵工叨一由卿面r口.翻玩;Heoco6e皿四M帅料a],非退化矩阵(non吐粤冠盼te“坦tr议) 其行列式不等于零的方阵(闪业祀n.让议).对于一个域上的方阵A,非奇异性等价于下述条件之一:l)A是可逆的;2)A的诸行(列)是线性无关的;3)A可以通过初等行(列)变换化为单位矩阵. 0 .A.价aHoBa撰
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条