1) Generalized Inverse of Partitioned Morphisms
分块态射的广义逆
2) generalized inverse of morphism
态射广义逆
4) partitioned morphism
分块态射
1.
In this paper,the notion of a partitioned morphism is studied,several formulas are derived and a new way is given to study the Moore-Penrose inverse of f=(u v),which equals to the way given by the paper of Peska P(2000).
讨论了分块态射的Moore-Penrose逆,用不同与文[1]的方法给出了分块态射f=(u v)的Moore-Penrose逆表达式。
2.
Petr Peska introduced the notion of partitioned morphism and gave a formula for its Moore-Penrose inverse.
ClineRE给出了分块矩阵的Moore-Penrose逆的表达式,PetrPeska引进了分块态射的记号且导出了分块态射的Moore-Penrose逆的表达式。
5) perturbation analysis of generalized inverse
广义逆扰动分析
6) generalized inverse one of operator
算子的广义逆
1.
The solutions of the problem and the constructive expression of the solutions are given by the generalized inverse one of operator.
讨论了 Hilbert空间中二阶耦合广义系统的极点配置问题 ,应用算子的广义逆给出了问题的解及解的构造性表达
补充资料:仿射态射
仿射态射
afBne morphism
仿射态射!心ne m.,hism;a中扣.洲‘‘Mop加,M] 概形的态射f二X~S,使得S中每个开仿射子概形的原象也是一个仿射概形(affine scheme).概形X称为仿射s概形(affines一scheme)· 设s是一个概形,A是少s代数的拟凝聚层,矶是S内开仿射子概形,它们构成S的一个夜叠.那么把仿射概形Specr(U:,A)粘合起来就确定一个仿射S概形,记为Spec A.反之,可用仿射态射f:X~S定义的任何仿射S概形都同构于(作为S上概形)概形Specf.心.S概形f:Z~S到仿射S概形SpecA中S态射的集合与岁s代数层的同态A~f.几成一一对应. 概形的闭嵌人或仿射概形的任意态射都是仿射态射;仿射态射的其他例子是整态射以及有限态射.因而概形正规化的态射是仿射态射.仿射态射在复合及基变换下仍保持是仿射态射.【补注】‘一!方一,称为亨眼今射(finlte morph、“m),如果存在S的开仿射子概形的覆叠(S。),使得对所有的:,.厂‘(sa)是仿射的,并且f一’(sa)的环B。作为S。的环魂。土的模是有限生成的.态射是整的,如果氏在沌。上是整的,即每卜*6B。都在A。七是整的,这意指它足系数在注。中的泊一多项式的根或等价地,对每个一、任尽、,模‘4。卜]是有限生成一4。模.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条