1) Research on Earthquake Disaster Management
地震灾害管理研究
2) earthquake disaster management
地震灾害管理
1.
The earthquake disaster management system in China is reviewed in this paper.
本文简要回顾了我国的地震灾害管理体制,指出这一完全在计划经济体制下发展起来的管理体制面对市场经济所显现的不足和目前使用金融手段的必要性和可能性,具体探讨了地震保险费率厘定、巨灾债券利息确定的研究。
3) Research Issues of Disaster Management
灾害管理学的研究内容
5) earthquake disaster risk management
地震灾害风险管理
6) mechanism of earthquake disaster
地震灾害机理
1.
The study plan and ideas about the acquirement and analysis of earthquake disaster data, study on dynamic properties of soils, nonlinear seismic response analysis method, mechanism of earthquake disaster, seismic safety evaluation theory, anti-seismic measures and dynamic model test are proposed for the high earth-rockfill dams.
并针对高土石坝震害资料获取与整理、坝料动力特性研究、多耦合非线性动力分析理论和方法、动力破损特征与地震灾害机理、地震安全评价与震害预测的基本理论、抗震设计及抗震措施、震灾机理和抗震理论的动力模型试验等研究提出了工作设想和展望,并提出了建立土石坝地震安全评价及防灾对策专家系统的基本思路。
补充资料:地震灾害
地震灾害早在中国《诗经·小雅》就有描述:"烨烨震电,不宁不令,百川沸腾,山冢崒崩,高岸为谷,深谷为陵。"其后在史书、地方志上均记载地震引起的地表变化,人工设施破坏及火灾、水灾、环境污染、疾病传染等次生灾害造成的人畜伤亡和社会经济损失。中国自20世纪以来,大约平均每3年发生两次7级以上地震,而两次大地震中几乎就有一次酿成重灾。特别是1966年至1976年期间,发生了十多次7级以上大地震,多发生在东经98度以东的人口稠密地区,据统计死亡近30万人,其中唐山地震发生在现代城市地区,一次死亡24万人,造成的损失十分严重,见图1及图2。 地震引起的地表变化 地裂 地震引起的地面裂缝主要有构造性地裂及重力型地裂。构造性地裂是地下断层的错动连带地面的岩层发生相对位移而形成的地面新断裂,地裂缝与地下断层走向一致,其形成与断层的力学机制有关,一般规模较大,形状也比较规则,常呈带状出现(由数条雁行排列的裂缝组成),裂缝延续可达几公里至几十公里,带宽几米至几十米。重力型地裂是在故河道、湖河堤岸边、坡边和田地场院等处,由于土的结构不均匀,土坡不稳定,或由于地下有液化层而引起的交错、大小形状不一的地裂缝。
山崩 山区陡坡在强烈地震时由于失稳而引起的崩溃。1933年四川迭溪地震,山崩堵塞河道,形成四个地震湖,后溃决成灾,被水冲没2500余人。1920年宁夏海原地震,黄土大量滑坡,各种大小不等的滑坡体在河谷上形成一系列的"堰塞湖"。(见彩图)
砂土液化 地下水位以下的较松散的砂土、轻亚粘土在突然发生的地震动力作用下土颗粒间有压密趋势,孔隙水来不及排除,使孔隙压力增高,抵消了颗粒间的有效压力,因而土的抗剪强度急剧下降,甚至趋近于零,土颗粒呈悬浮状态,形成如同"液体"一样的现象,称为砂土液化。液化发生后,受压的孔隙水有可能冲破上覆的土层冒出地面;历史上的地震记载均有喷砂冒水的现象(见地震工程地质勘察),实际上是砂土液化的一种标志。砂土液化使地基丧失承载能力,导致房屋下沉或倾倒。1964年日本新潟地震发生后数分钟,许多建筑物逐渐倾斜以至倾倒,人们从窗户爬出屋外,而房屋结构基本无损。1964年美国阿拉斯加州地震在安克雷奇市沿海发生大规模的海岸滑坡。1976年唐山地震在靠近北京的密云水库,大坝的迎水面滑移,都是由于砂土液化引起的。
海啸 海啸是地震发生在海底时,造成海底的滑移或海底平面的变化,扰动海洋产生巨浪冲上陆地的现象。巨浪跨越海面时,在广阔的海洋面上不易察觉,一旦到达海岸,且海岸有一定曲度和坡度时,巨大的波浪就会产生多次干涉作用,最终形成异常凶猛的惊涛骇浪,以不可抗拒的力量冲刷海岸,淹没陆地。海啸多发生在环太平洋海域,其中阿留申至千岛和智利海沟一带发生大地震引起的海啸特别大。1960年发生在海底的智利大地震,引起海啸,除吞噬了智利中南部沿海房屋外,海浪从智利沿海以每小时640公里的速度横扫太平洋,22小时之后袭击了距智利17000公里的日本,使本州和北海道的海港设备和码头建筑遭到严重的破坏,巨大轮船被抛上陆地。中国历史上也有地震引起海啸的记载,唯其规模不大。
工程破坏 房屋建筑毁坏 地震时各类房屋建筑物破坏或倒塌是造成生命财产损失的主要原因。房屋建筑受到超过材料承载能力的地面强烈运动产生的水平方向和竖直方向的地震作用,使结构产生裂缝或很大变形,以致不能恢复原状;如果在地震反复作用下结构的裂缝和变形继续发展超过了容许限值,结构完全丧失承载能力,导致倒塌。在多层砖石结构房屋中,最常见的强度破坏是墙身出现交叉裂缝,在强烈的、反复许多次地震作用后,砖墙被震酥,甚至崩解,导致砖房倒塌。在钢筋混凝土结构中,常见的强度破坏是构件的混凝土裂缝;如果箍筋不足,又受强震连续作用,混凝土的核心被震酥,从而丧失承载能力,也会导致房屋的严重破坏或倒塌。
房屋建筑的地震破坏的另一种破坏形态,是由于房屋结构件间的结合不良,强烈地震引起连接部分破坏,结构丧失整体性。在多层砖石结构房屋中的内外墙施工咬结不良,外墙整体向外倾倒。装配式钢筋混凝土房屋(如多层工业厂房)屋盖系统不成整体,也能导致厂房倒塌。钢结构的焊缝强度不足使节点破坏,也是一种结合不良的破坏形式。
桥梁破坏 桥梁的地震破坏,多数由于岸坡滑动,桥头下沉,墩台向河心移位,桥孔缩短,墩台折断。有的由于桥墩地基沉陷,使桥墩移位或倾斜;或桥墩的变化导致支座歪斜、倾倒和落梁(见桥梁结构抗震)。
铁路破坏 大地震之后,常见由于路堤破坏引起的钢轨扭曲。路堤的破坏表现为下沉、开裂、坍塌、错落。此外钢轨的轨缝拉大及钢轨拉断也是常见的震害。
生命线工程的破坏 生命线工程指城市里的供水、供电、供气、交通、电信等工程设施。地震后往往由于地裂缝或错动使地下管线破坏。变压器倾倒或输电塔架破坏,使供电中断;城市桥梁破坏,引起交通阻塞。这些生命线工程设施的破坏,使地震后的救灾工作发生困难,城市生活紊乱,生产活动停顿,影响十分严重。
次生灾害 地震发生后,由于工程设施遭受破坏,引引停水、停电、火灾或有毒气体的扩散,煤气爆炸和环境污染等灾害统称为次生灾害。次生灾害的破坏力很大,特别是地震引起火灾。如果地震时水管破裂,消防设施失效,大火就无法制止,引起火灾。1923年9月1日日本关东大地震,房屋被震倒的约13万栋而烧毁的房屋竟达45万栋之多。1906年4月18日美国旧金山大地震,震后三天大火,共烧毁521个街区的28000栋建筑物,使已被震坏但仍未倒的房屋,又被火灾夷为废墟,由地震破坏的财产损失约2000万美元,因火灾却损失4000万美元。
参考书目
《地震工程》编写组:《地震工程概论》,科学出版社,北京,1977。
李善邦:《中国地震》,科学出版社,北京,1981。
山崩 山区陡坡在强烈地震时由于失稳而引起的崩溃。1933年四川迭溪地震,山崩堵塞河道,形成四个地震湖,后溃决成灾,被水冲没2500余人。1920年宁夏海原地震,黄土大量滑坡,各种大小不等的滑坡体在河谷上形成一系列的"堰塞湖"。(见彩图)
砂土液化 地下水位以下的较松散的砂土、轻亚粘土在突然发生的地震动力作用下土颗粒间有压密趋势,孔隙水来不及排除,使孔隙压力增高,抵消了颗粒间的有效压力,因而土的抗剪强度急剧下降,甚至趋近于零,土颗粒呈悬浮状态,形成如同"液体"一样的现象,称为砂土液化。液化发生后,受压的孔隙水有可能冲破上覆的土层冒出地面;历史上的地震记载均有喷砂冒水的现象(见地震工程地质勘察),实际上是砂土液化的一种标志。砂土液化使地基丧失承载能力,导致房屋下沉或倾倒。1964年日本新潟地震发生后数分钟,许多建筑物逐渐倾斜以至倾倒,人们从窗户爬出屋外,而房屋结构基本无损。1964年美国阿拉斯加州地震在安克雷奇市沿海发生大规模的海岸滑坡。1976年唐山地震在靠近北京的密云水库,大坝的迎水面滑移,都是由于砂土液化引起的。
海啸 海啸是地震发生在海底时,造成海底的滑移或海底平面的变化,扰动海洋产生巨浪冲上陆地的现象。巨浪跨越海面时,在广阔的海洋面上不易察觉,一旦到达海岸,且海岸有一定曲度和坡度时,巨大的波浪就会产生多次干涉作用,最终形成异常凶猛的惊涛骇浪,以不可抗拒的力量冲刷海岸,淹没陆地。海啸多发生在环太平洋海域,其中阿留申至千岛和智利海沟一带发生大地震引起的海啸特别大。1960年发生在海底的智利大地震,引起海啸,除吞噬了智利中南部沿海房屋外,海浪从智利沿海以每小时640公里的速度横扫太平洋,22小时之后袭击了距智利17000公里的日本,使本州和北海道的海港设备和码头建筑遭到严重的破坏,巨大轮船被抛上陆地。中国历史上也有地震引起海啸的记载,唯其规模不大。
工程破坏 房屋建筑毁坏 地震时各类房屋建筑物破坏或倒塌是造成生命财产损失的主要原因。房屋建筑受到超过材料承载能力的地面强烈运动产生的水平方向和竖直方向的地震作用,使结构产生裂缝或很大变形,以致不能恢复原状;如果在地震反复作用下结构的裂缝和变形继续发展超过了容许限值,结构完全丧失承载能力,导致倒塌。在多层砖石结构房屋中,最常见的强度破坏是墙身出现交叉裂缝,在强烈的、反复许多次地震作用后,砖墙被震酥,甚至崩解,导致砖房倒塌。在钢筋混凝土结构中,常见的强度破坏是构件的混凝土裂缝;如果箍筋不足,又受强震连续作用,混凝土的核心被震酥,从而丧失承载能力,也会导致房屋的严重破坏或倒塌。
房屋建筑的地震破坏的另一种破坏形态,是由于房屋结构件间的结合不良,强烈地震引起连接部分破坏,结构丧失整体性。在多层砖石结构房屋中的内外墙施工咬结不良,外墙整体向外倾倒。装配式钢筋混凝土房屋(如多层工业厂房)屋盖系统不成整体,也能导致厂房倒塌。钢结构的焊缝强度不足使节点破坏,也是一种结合不良的破坏形式。
桥梁破坏 桥梁的地震破坏,多数由于岸坡滑动,桥头下沉,墩台向河心移位,桥孔缩短,墩台折断。有的由于桥墩地基沉陷,使桥墩移位或倾斜;或桥墩的变化导致支座歪斜、倾倒和落梁(见桥梁结构抗震)。
铁路破坏 大地震之后,常见由于路堤破坏引起的钢轨扭曲。路堤的破坏表现为下沉、开裂、坍塌、错落。此外钢轨的轨缝拉大及钢轨拉断也是常见的震害。
生命线工程的破坏 生命线工程指城市里的供水、供电、供气、交通、电信等工程设施。地震后往往由于地裂缝或错动使地下管线破坏。变压器倾倒或输电塔架破坏,使供电中断;城市桥梁破坏,引起交通阻塞。这些生命线工程设施的破坏,使地震后的救灾工作发生困难,城市生活紊乱,生产活动停顿,影响十分严重。
次生灾害 地震发生后,由于工程设施遭受破坏,引引停水、停电、火灾或有毒气体的扩散,煤气爆炸和环境污染等灾害统称为次生灾害。次生灾害的破坏力很大,特别是地震引起火灾。如果地震时水管破裂,消防设施失效,大火就无法制止,引起火灾。1923年9月1日日本关东大地震,房屋被震倒的约13万栋而烧毁的房屋竟达45万栋之多。1906年4月18日美国旧金山大地震,震后三天大火,共烧毁521个街区的28000栋建筑物,使已被震坏但仍未倒的房屋,又被火灾夷为废墟,由地震破坏的财产损失约2000万美元,因火灾却损失4000万美元。
参考书目
《地震工程》编写组:《地震工程概论》,科学出版社,北京,1977。
李善邦:《中国地震》,科学出版社,北京,1981。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条