说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 现在不行。
1)  Sorry, not right now.
现在不行。
2)  Not now
不是现在
3)  Not at the moment.
现在不要。
4)  Dalai Lama: No, not now.
不,不是现在。
5)  No, it isn't. It's five o'clock.
不,现在五点。
6)  Now I am not thirsty.
我现在不渴。
补充资料:超平行体


超平行体
paralldotope

  【补注1超平行体是高维胞形(劝notope)(见全对称多面体(zo加hedmn))的特殊类型,它们在数的几何(罗0咪卿ofn切的be比)与格的覆盖与填装(co说nng aedPacking)理论中起着基本的作用.超平行体L钾m朋d政脾;。aP~加伽] 点的集合,其径向量有形式 h一,乙x‘a,,其中o毛丫簇1(1‘i续P).这里a.,…,a,是一个n维仿射空间(剑田ncsP毗)A里的固定向量,它们称为移于行件的牛感手(邵n。习to二of thep~tope)并且与超平行体的一些棱重合,超平行体其他所有的棱与它们平行.如果超平行体的生成元是线性无关的(相关的),那么超平行体称为P维的(p~din犯璐10几d)或非退化的〔non~de罗11e份te)(退化的(众罗朋份忱)).退化超平行体是某个p维的超平行体到一个维数为k返P一1的平面上的平行投影.一个非退化的超平行体决定一个支撑p维平面.这样的超平行体对于p二2是一个平行四边形(pamlle10g旧In),对于p二3是一个平行六面体(pala刀 el0Pipedon). 两个非退化超平行体称为平行的(palallel),如果它们的支撑平面是平行的.对于平行的超平行体,有可能比较它们的p维“体积”〔即使A中不一定有一个度量).对于具有生成元a;,二,a。的超平行体的p维“体积”与具有生成元b、,…,b;的超平行体的p维“体积”的比率的数值,可用标量det(月)表示,这里(x;)是(pXP)矩阵,它将(bl,一,b,)变换到(a:,二,a,),即 P a,一,酥x;b:,,(,“,·如果在A中定义了内积(~product),则具有生成元a,,二,a,的超平行体的p维体积的平方等于元为(a‘,a,)的(夕X夕)维G“Inl矩阵(Gnun盯坦tr认)的行列式(deten元11ant).(亦见G~行列式(C抢mdeterminallt). 超平行体的概念与多向量(州y一暇tor)的概念紧密相关
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条