1) REAL POTENTIAL
潜力非凡
3) Her strength of will was extraordinary.
她的意志力非凡。
4) nontrivial solutions
非平凡解
1.
We obtained that for every λ>0 in the minimum problems Iλ and I∞λ,there exists α∈0,λ,such that both problems Iα and I∞α have nontrivial solutions.
讨论了一类拟线性椭圆型方程的CHOQUARD-PEKAR问题在无界区域中的非平凡解的存在性,对于极小问题Iλ和I∞λ,得到了对于每个λ>0,存在α∈(0,λ],使得Iα和I∞α可以达到。
2.
In this paper, a concentration-compactness lemma for the problem of quasilinear elliptic equations is given, and the existence of nontrivial solutions is discussed by use of this lemma.
给出了相应的拟线性方程的定解问题的集中列紧引理 ,利用这一结果得到了方程在无界区域中非平凡解的存在性。
3.
With the mountain pass lemma and the means of straightening the boundary,the existence of nontrivial solutions are obtained by verifing the functional J(u) corresponding to the equations satisfy the local(PS) conditions.
研究了一类含Sobolev-Hardy临界指数与Hardy项的椭圆方程,通过验证方程对应的泛函J(u)满足局部(PS)条件,运用山路引理与拉直边界的方法得到了这类方程非平凡解的存在性。
5) nontrivial solution
非平凡解
1.
Existence of nontrivial solution for an elliptic equation;
一类椭圆型方程的非平凡解的存在性
2.
Existence of nontrivial solutions for the p-Laplacian Problem on unbounded domain;
无界区域上p-Laplace问题的非平凡解的存在性
3.
On the nontrivial solutions and dead core problem for the equation Δu=c︱Du(X)︱~(p-1);
关于方程Δu=c︱Du︱~(p-1)的非平凡解及死核问题
6) non-trivial solution
非平凡解
1.
The relationship between the existence of the non-trivial solutions and the length of normal materials for the one-dimensional Ginzburg-Landau models of superconductivity with S-N-S junctions;
一维含杂质Ginzburg-Landau超导模型非平凡解的存在性与杂质厚度之间的关系
2.
In this paper, we discuss one kind of nonlinear Volterra integral equation with the convolution kernel, and give some results on the uniqueness and approximate method of the non-trivial solutions of this equation.
本文对一类具有卷积核的非线性Volterra型积分方程进行了讨论,给出了关于这类方程的非平凡解的存在性和解的逼近方法的一些结果。
3.
The non-trivial solutions of equation λ_1x_1~k+λ_2x_2~k+…+λ_nx_k~n=0 are discussed, and the upper bound of the non-trivial solutions, when k≥6, is given here.
研究了方程λ_1x_1~k+λ_2x_2~k+……+λ_nx_n~k=0的非平凡解,得出了当k≥6时此。
补充资料:潜力
内在的没有发挥出来的力量或能力:发挥潜力|挖掘潜力。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条