1) a case for a mirror
镜函
2) objective function
物镜函数
3) Complex image Green's function
复镜象格林函数
4) image Green function
镜像格林函数
1.
In the model,the fully-nonlinear free surface boundary conditions are satisfied and the semimixed Euler-Lagrange method is used to track free surface;the fourth-order Runge-Kutta method is used to refresh the wave elevation and the velocity potential on the free surface at each time step;the image Green function is used so that the integration on t.
采用半混合欧拉-拉格朗日方法追踪流体瞬时水面,运用四阶Runge-Kutta方法更新下一时间步的波面和速度势,同时应用镜像格林函数消除水槽两个侧面和底面上的积分。
2.
An image Green function is applied to the present model so that two lateral surfaces of an infinite-depth wave tank can be excluded from the calculation domain.
将镜像格林函数应用到无限水深的数值波浪水槽中,以至于两水槽侧壁可以排除于计算域外。
5) correlation function of shot clusters
镜头类相关性函数
6) Image Green's Function
镜像水槽格林函数
补充资料:并矢格林函数
所谓并矢,是矢量的一种组合形式,如AB,其中两个矢量A、B互相不必有联系。在三维情形,它有九个分量。并矢也可表示成一个正方矩阵。它对一个矢量C右乘C·AB)=(C·A)B或左乘(AB·C)=A (B·C),就成为有标量倍数的矢量。
采用并矢记号,可以简洁地表示任意偶极源所引起的电场和磁场。令偶极源的矩(电矩或磁矩)为a,位于r┡点, 可以把这矩按r┡点的正交坐标轴展开a=a1u姈+a2u娦+a3u婭,u徾是r┡点沿坐标轴的单位矢量,设r┡点以u徾(i=1,2,3,下同)为矩的偶极源在r点引起的场(电场或磁场)的i分量为Gij(r,r┡),则在线性媒质中,以a为矩的偶极源在r点所引起的场就等于,这里的ui是r点的沿坐标轴的单位矢量,它与u媴可以不平行(例如圆柱坐标系中的嗚 和ρ都逐点改变方向)。由于,r点的场矢量可写作=G(r,r)·a,其中是个并矢,称为并矢格林函数。它的分量Gij(r,r┡)的第一个下标i和第一组宗量r 是场的分量标号和场点坐标;第二个下标i和第二组宗量r┡是源矩的下标和源点的坐标。
应用并矢格林函数可以简化求解任意分布源的场,可用以写出未知分布的受激源(如煤质块的极化电流)或未知分布的衍射孔面场的积分方程,以利于用数值方法求解。在天线和微波遥感等电磁场理论的应用领域中是基本的数学表达方法之一。
采用并矢记号,可以简洁地表示任意偶极源所引起的电场和磁场。令偶极源的矩(电矩或磁矩)为a,位于r┡点, 可以把这矩按r┡点的正交坐标轴展开a=a1u姈+a2u娦+a3u婭,u徾是r┡点沿坐标轴的单位矢量,设r┡点以u徾(i=1,2,3,下同)为矩的偶极源在r点引起的场(电场或磁场)的i分量为Gij(r,r┡),则在线性媒质中,以a为矩的偶极源在r点所引起的场就等于,这里的ui是r点的沿坐标轴的单位矢量,它与u媴可以不平行(例如圆柱坐标系中的嗚 和ρ都逐点改变方向)。由于,r点的场矢量可写作=G(r,r)·a,其中是个并矢,称为并矢格林函数。它的分量Gij(r,r┡)的第一个下标i和第一组宗量r 是场的分量标号和场点坐标;第二个下标i和第二组宗量r┡是源矩的下标和源点的坐标。
应用并矢格林函数可以简化求解任意分布源的场,可用以写出未知分布的受激源(如煤质块的极化电流)或未知分布的衍射孔面场的积分方程,以利于用数值方法求解。在天线和微波遥感等电磁场理论的应用领域中是基本的数学表达方法之一。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条